Medical and Biological Engineering and Computing

, Volume 29, Issue 5, pp 470–474 | Cite as

Frequency stabilisation of multimode helium-neon lasers in laser Doppler flowmetry

  • H. Deblén
  • P. Å. Öberg


Low-frequency noise in laser Doppler recordings can be generated because of thermal instabilities in the gas laser cavity. Mode partition noise can be eliminated by thermal stabilisation of the laser cavity. The paper describes a method for closed loop temperature control of the laser cavity. The method uses orthogonal properties of longitudinal laser modes for the temperature control. The signal-to-noise ratio is considerably improved by the procedure. It is recommended that all gas laser equipped Doppler instruments used for precision blood flow studies shold be equipped with stabilised laser sources.


Laser Doppler Noise stabilisation Temperature control Vasomotion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balhorn, R., Kunzmann, H. andLebowsky, F. (1972) Frequency stabilization of internal-mirror helium-neon lasers.Appl. Optics,11, 742–744.Google Scholar
  2. Bennet, W. R., Jacobs, S. F., La Tourrette, J. T. andRabinowitz, P. (1964) Dispersion characteristics and frequency stabilization of an He−Ne gas laser.Appl. Phys. Lett.,5, 56–58.CrossRefGoogle Scholar
  3. Deblén, H. andÖberg, P. A. (1990) Termisk stabilisering av helium-neon lasrar. IMT rapport University of Linköping, ULi-IMT-IS-0057 (in Swedish).Google Scholar
  4. Desai, J. N., Chandrasekhar, T. andMadhavan, R. (1979) Frequency stabilization of He−Ne lasers.J. Phys. E.: Sci. Instrum.,112, 1040–1042.CrossRefGoogle Scholar
  5. Fairs, S. L. E. (1988) Observation of a laser Doppler flowmeter output made using calibration standard.Med. & Biol. Eng. & Comput.,26, 404–406.CrossRefGoogle Scholar
  6. Gordon, S. K. andJacobs, S. F. (1974) Modification of inexpensive multi-mode lasers to produce a stabilized single frequency beam.Appl. Optics,13, 231.CrossRefGoogle Scholar
  7. Gush, R. J. andKing, T. A. (1987) Investigation and improved performance of optical fibre probes in laser Doppler blood flow measurement.Med. & Biol. Eng. & Comput.,25, 391–396.CrossRefGoogle Scholar
  8. Harris, C. M. andCrede C. E. (Eds.) (1961)Shock and vibration handbook, Vol. 2, McGraw Hill, New York.Google Scholar
  9. Holloway, G. A. (1983)Non-invasive physiological measurements,Rolfe,P. (Ed.), Vol. 2, Academic Press, New York.Google Scholar
  10. Mielenz, K. D., Nefflen, K. F., Rowley, W. R. C., Wilson, D. C. andEngelhard, E. (1968) Reproducibility of helium-neon laser wavelengths at 633 nm.Appl. Optics,7, 289–293.Google Scholar
  11. Nilsson, G. E., Tenland, T. andÖberg, P. Å. (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans.,BME-27, 12–19.Google Scholar
  12. Öberg, P. Å. (1988) A method for frequency stabilization of multimode He−Ne lasers in laser-Doppler flowmetry. Abstr. World Congress on Medical Physics and Biomedical Engineering, San Antonio, Texas, August 6–12, Biomed. Eng. Sci. Papers BE18-E.1.Google Scholar
  13. Öberg, P. Å. (1990) Laser Doppler flowmetry.CRC Critical reviews in Biomedical Engineering,18 (2), 125–163.Google Scholar
  14. Salerud, E. G., Tenland, T., Nilsson, G. E. andÖberg, P. (1983) Rhythmical variations in human skin blood flow.Int. J. Microcirc.: Clin. Exp.,2, 91–102.Google Scholar
  15. Shepherd, A. P. andÖberg, P. Å. (Eds) (1990)Laser-Doppler blood flowmetry, Kluwer Academic Publ, London.Google Scholar
  16. Spieweck, F. (1967) Bezug einer laserfrequenz auf die atomare Frequenz durch Wobbeln.Z. Naturforschg.,22a, 2067–2069.Google Scholar
  17. Watkins, D. W. andHolloway JrG. A. (1978) An instrument to measure cutaneous blood flow using the Doppler shift of laser light.IEEE Trans.,BME-25, 28–33.Google Scholar
  18. White, A. D. (1965) Frequency stabilization of gas lasers.IEEE J. Quantum Electron.,QE-1, (8), 349–357.CrossRefGoogle Scholar

Copyright information

© IFMBE 1991

Authors and Affiliations

  • H. Deblén
    • 1
  • P. Å. Öberg
    • 1
  1. 1.Department of Biomedical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations