Skip to main content
Log in

Causal relationship between heart rate and arterial blood pressure variability signals

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A method is described which allows the determination of the causal relationship existing between two biological signals (heart rate and arterial blood pressure variability signals) which carry information about the role of control elicited by the autonomic nervous system. This method assumes an autoregressive (AR) model for the two signals to check the cross-correlation of the two residuals after AR identification. This information, together with the classical parameters of the spectral analysis (mean, variance, frequency and power in two typical bands, gain, phase and coherence) may provide a more precise evaluation of the complex mechanisms involved in the control of heart rate and blood pressure in numerous physiopathological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A.J., Harness, J.B., Mason, J. andMearns, A.J. (1981) Cross correlation between blood pressure and intracranial pressure.Clin. Phys. Physiol. Meas.,2, 157–162.

    Article  Google Scholar 

  • Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C. andCohen, R.J. (1981) Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control.Science,213, 220–222.

    Google Scholar 

  • Akselrod, S., Gordon, D., Madwed, J.B., Snidman, N.C., Shannon, D.C. andCohen, R.J. (1985) Hemodynamic regulation: investigation by spectral analysis.Am. J. Physiol.,249, M867-M875.

    Google Scholar 

  • Baselli, G., Cerutti, S., Civardi, S., Liberati, D., Lombardi, F., Malliani, A. andPagani, M. (1986a) Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals.Comput. & Biomed. Res.,19, 520–534.

    Article  Google Scholar 

  • Baselli, G., Cerutti, S., Civardi, S. andRizzo, G. (1986b) Toward a modelisation of heart rate and blood pressure interaction through parametric bivariate analysis. Computers in Cardiology, IEEE, Boston, USA.

    Google Scholar 

  • Baselli, G., Cerutti, S., Civardi, S., Malliani, A., Orsi, G., Pagani, M. andRizzo, G. (1988) Parameter extraction from heart rate and arterial blood pressure variability signals in dogs for the validation of a physiological model.Comput. in Biol. & Med.,18, (1), 1–16.

    Article  Google Scholar 

  • Caines, P.E. andChan, C.W. (1975) Estimation, identification and feedback. Research Report 7510, Department of Electrical Engineering, University of Toronto, Toronto, Canada.

    Google Scholar 

  • de Boer, R.W., Karemaker, J.M. andStrackee, J. (1985) Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I: a spectral analysis approach.Med. & Biol. Eng. & Comput.,23, 352–358.

    Google Scholar 

  • de Boer, R.W., Karemaker, J.M. andStrackee, J. (1987) Haemodynamic fluctuations and baroreflex sensitivity in humans: a beat to beat model.Am. J. Physiol.,243, 680–689.

    Google Scholar 

  • de Trafford, J.C., Lafferty, K., Kitney, R.I., Cotton, L.T. andRoberts, V.C. (1982) Modelling of the human vasomotor control system and its application to the investigation of arterial disease.IEE Proc.,129A, 646–650.

    Google Scholar 

  • Geweke, J. (1982) Measurement of linear dependence and feedback between multiple time series.J. Am. Statistical Assoc.,77, 304–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Granger, C.W.J. (1963) Economic processes involving feedback. InInformation and control, vol. 6.Granger, C.W.J. andHatanaka, M.N.J. (Eds.), Princeton Press.

  • Granger, C.W.J. (1969) Investigating causal relations by econometric models and cross-spectral methods.Econometrica,37, 424–438.

    Article  Google Scholar 

  • Granger, C.W.J. (1980) Testing for causality: a personal viewpoint.J. Economics, Dynamics & Control,2, 329–352.

    Article  MathSciNet  Google Scholar 

  • Haugh, L.D. (1972) The indentification of time series interrelationships with special reference to dynamic regression. Ph.D. dissertation, Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA.

    Google Scholar 

  • Haugh, L.D. (1976) Checking the independence of two covariance-stationary time series: a univariate residual cross-correlation approach.J. Am. Statistical Assoc.,71, 378–385.

    Article  MATH  MathSciNet  Google Scholar 

  • Hyndman, B.W., Kitney, R.I. andSayers, B. McA. (1971) Spontaneous rhythms in physiological control system.Nature,233, 339–341.

    Article  Google Scholar 

  • Kitney, R.I. andRompelman, O. (Eds.) (1980)The study of heart rate variability. Oxford University Press.

  • Kitney, R.I. andRompelman, O. (Eds.) (1987)The beat-by-beat investigation of cardiovascular function. Clarendon Press.

  • Orlebeke, J.F., Mulder, G. andvan Doomen, L.J.P. (Eds.) (1985)Psychophysiology of cardiovascular control: models, methods and data. Plenum Press.

  • Pagani, M., Pizzinelli, P., Bergamaschi, M. andMalliani, A. (1982) A positive feedback sympathetic pressor reflex during stretch of the thoracic aorta in conscious dogs.Circ. Res.,50, 125–132.

    Google Scholar 

  • Pagani, M., Furlan, R., Dell'Orto, S., Pizzinelli, P., Baselli, G., Cerutti, S., Lombardi, F. andMalliani, A. (1985) Simultaneous analysis of beat-to-beat systemic arterial pressure and heart rate variability signals in ambulatory patients.J. Hypertension,3, Suppl. 3, S83-S85.

    Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Furlan, R., Pizzinelli, P., Rimoldi, S., Sandrone, G., Malfatto, G., Dall'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S. andMalliani, A. (1986) Power spectral analysis of beat-to-beat heart and blood pressure variability signals as a possible marker of sympatho-vagal interaction in man and conscious dog.Circ. Res.,59, 178–193.

    Google Scholar 

  • Pierce, D.A. (1975) Forecasting in dynamic models with stochastic regression.J. Econometrics,3, 349–374.

    Article  MATH  MathSciNet  Google Scholar 

  • Pierce, D.A. andHaugh, L.D. (1977) Causality in temporal systems: characterizations and a survey.Ibid., J. Econometrics,3, 265–293.

    Article  MathSciNet  Google Scholar 

  • Pierce, D.A. andHaugh, L.D. (1979) Comment on price.Ibid., J. Econometrics,10, 257–260.

    Article  MathSciNet  Google Scholar 

  • Price, J.M. (1979) A characterization of instantaneous causality: a correction.Ibid., J. Econometrics,10, 253–256.

    Article  MathSciNet  Google Scholar 

  • Sayers, B. McA. (1973) Analysis of heart rate variability.Ergonomics,16, 17–32.

    Google Scholar 

  • Veldman, J.B.P., Mulder, L.J.M., Mulder, G. andvan der Heide, D. (1985) Short-term coherence between blood pressure and heart rate during mental loading: an exploration in the time and in the frequency domain. InPsychophysiology of cardiovascular control: models, methods and data.Orlebeke, J.F., Mulder, G. andvan Doomen, L.J.P. (Eds.), Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baselli, G., Cerutti, S., Livraghi, M. et al. Causal relationship between heart rate and arterial blood pressure variability signals. Med. Biol. Eng. Comput. 26, 374–378 (1988). https://doi.org/10.1007/BF02442294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442294

Keywords

Navigation