Beat-to-beat detection of His-Purkinje system signals using adaptive filters

  • H. A. M. Al-Nashash
  • S. W. Kelly
  • D. J. E. Taylor
Physiological Measurement

Abstract

Noninvasive techniques to record the activation wave from the His-Purkinje system have so far depended largely on signal averaging. Although this approach produces representative signals, any beat-to-beat variations are removed by the averaging process. These beat-to-beat variations are important in the diagnosis of many heart abnormalities, particularly arrhythmias. The paper describes an experimental system which can detect His-Purkinje system electrograms at the body surface while preserving beat-to-beat variations. The system uses a number of different techniques, but an important feature is the use of an adaptive filter to reduce additive noise. The experimental system is not real-time, as the adaptive filtering is performed offine using software, but a real-time hardware implementation is quite feasible. The system's ability to detect beat-to-beat variations has produced a number of interesting results, which are discussed. These include a cyclic variation in a normal subject, believed to be due to the modulating effects of breathing, and signals from a patient suffering from second degree A-V block.

Keywords

Adaptive filters Arrhythmias His-Purkinje signals Noninvasive techniques Signal processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berbari, E. J., Lazzara, R., Samet, P. andScherlag, B. J. (1973) Noninvasive technique for detection of electrical activity during the P-R segment,Circ.,48, 1005–1013.Google Scholar
  2. Berbari, E., Lazzara, R. andScherlag, B. (1979) The effects of filtering the His-Purkinje system electrocardiogram.IEEE Trans.,BME-26, 82–85.Google Scholar
  3. Berbari, E. J., Collins, S., Salu, Y. andArzbaecher, R. (1981) A computer model for simulation of noninvasive His-Purkinje system recordings. Proc. Computers in Cardiology, 47–52.Google Scholar
  4. Berbari, E. (1983) High resolution electrocardiography. Proc. IEEE Frontiers of Eng. & Comput. in Health Care, 240–244.Google Scholar
  5. Berbari, E. J., Collins, S., Salu, Y. andArzbaecher, R. (1983) Orthogonal surface lead recording of His-Purkinje activity: comparison of actual and simulated waveforms.IEEE Trans.,BME-30, 160–167.Google Scholar
  6. Berbari, E., Collins, S. andArzbaecher, R. (1986) Evaluation of esophageal electrodes for recording His-Purkinje activity based upon signal variance.,BME-33, 922–928.Google Scholar
  7. Bones, P., Ikram, H. andMaslowski, A. (1982a) Signals from the ventricular specialised conduction system of heart. I Modelling the VSCS signal.Australas. Phys. & Eng. Sci. Med.,5, (4), 151–154.Google Scholar
  8. Bones, P., Ikram, H. andMaslowski, A. (1982b) Signals from the ventricular specialised conduction system of heart. II. Noninvasive measurements.,4, (4), 155–157.Google Scholar
  9. Briehardt, G., Becker, R., Seipel, L., Abendroth, R. andObstermeyer, J. (1981) Non-invasive detection of late potentials in man—a new marker for ventricular tachycardia.Europ. Heart J.,2, 1–11.Google Scholar
  10. Brigham, E. (1974)The fast Fourier transform. Prentice-Hall, New Jersey.MATHGoogle Scholar
  11. Ferrara, E. R. andWidrow, B. (1981) Multichannel adaptive filtering for signal enhancement.IEEE Trans.,CAS-28, 606–610.Google Scholar
  12. Ferrara, E. R. andWidrow, B. (1982) Fetal electrocardiogram enhancement by time-sequenced adaptive filtering.,BME-29, 458–460.Google Scholar
  13. Flowers, N. C., Hand, R. C., Orander, P. C., Miller, C. B., Walden, M. O. andHoran, L. G. (1974) Surface recording of electrical activity from the region of the bundle of His.Am. J. Cardiol.,33, 384–389.CrossRefGoogle Scholar
  14. Flowers, N. C., Shvartsman, B. M., Kennelly, B. M., Sohi, G. S. andHoran, L. G. (1981) Surface recording of His-Purkinje activity on an every-beat basis without digital averaging.Circ.,63, 948–952.Google Scholar
  15. Flowers, N. C., Shvartsman, V., Barnes, G. R. andShvartsman, L. (1982) Multichannel signal processing based on logic averaging.IEEE Trans.,BME-29, 531–536.Google Scholar
  16. Furness, A. (1975) His bundle electrocardiography.IEE Medical Electronics Monographs 13–17.Hill, D. W. andWatson, B. W. (Eds.), Peter Peregrinus, Stevenage, 48–85.Google Scholar
  17. Furness, A., Sherratt, G. P. andCarson, P. (1975) The feasibility of detecting His bundle activity from the body surface.Cardiovasc. Res.,9, 390.Google Scholar
  18. Haft, J. I. (1973) The His bundle electrogram.Circ.,47, 897–911.Google Scholar
  19. Huhta, J. C. andWebster, J. G. (1973) 60 Hz interference in electrocardiography.IEEE Trans.,BME-20, 91.Google Scholar
  20. Mehra, R., Restivo, M. andEl-Sherif, N. (1983) Electromyographic noise reduction for high resolution electrocardiography. Proc. IEEE Frontiers of Eng. & Comput. in Health Care, 248–253.Google Scholar
  21. Netter, F. H. (1969)The CIBA Collection of medical illustrations: the heart. Vol. 5 CIBA Pharmaceutical Co.Google Scholar
  22. Ott, H. (1976)Noise reduction techniques in electronic systems. Wiley Int., New York.Google Scholar
  23. Papoulis, A. (1984)Probability, random variables and stochastic processes. McGraw-Hill, New York.MATHGoogle Scholar
  24. Peper, A., Jonges, R., Losekoot, T. G. andGrimbergen, C. (1982) Separation of His-Purkinje potentials from coinciding atrium signals: Removal of the P-wave from the electrocardiogram.Med. & Biol. Eng. & Comput.,20, 195–201.Google Scholar
  25. Peper, A., Jonges, R., Losekoot, T. andGrimbergen, C. (1983) The recognition of surface His-Purkinje signals. Proc. Medinfo 83,van Bemmel, andWigertz, IFIP-IMA, 685–688.Google Scholar
  26. Peper, A., Jonges, R., Losekoot, T., andGrimbergen, C. (1984) Morphology of the surface His-Purkinje signal. Proc. 11th Int. Cong. Electrocardiol, Caen, France, 361–367.Google Scholar
  27. Peper, A., Jonges, R., Losekoot, M. T. andGrimbergen, C. (1985) Recording of surface His-Purkinje potentials.Med. & Biol. Eng. & Comput.,23, 365–376.Google Scholar
  28. Babiner, L. andGold, B. (1975)Theory and application of digital signal processing. Prentice-Hall, New Jersey.Google Scholar
  29. Ros, H., Koeleman, A. andAkker, V. (1981) The technique of signal averaging and its practical application in the separation of atrial and His-Purkinje activity. InSignal averaging techniques in clinical cardiology. Schotter Verlag, Stuttgart, Federal Republic of Germany.Google Scholar
  30. Rosen, K. M. (1971) The contribution of His bundle recording to the understanding of cardiac conduction in man.Circ.,43, 961–966.Google Scholar
  31. Scherlag, B. J., Lau, S. H., Helfant, R. H., Berkowitz, W. D. andStein, E. (1969) Catheter technique for recording His bundle activity in man.,39, 13–18.Google Scholar
  32. van Valkenburg, M. (1982)Analog filter design. Holt-Saunders, New York.Google Scholar
  33. Webster, J. G. (1984) Reducing motion artefacts and interference in biopotential recording.IEEE Trans.,BME-31, 823–826Google Scholar
  34. Widrow, B. (1966)Adaptive filters 1: fundamentals. Stanford Electronic Labs, Stanford University, Stanford.Google Scholar
  35. Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, E. andGoodlin, R. C. (1975) Adaptive noise cancelling: principles and applications.Proc. IEEE,63, 1692–1717.CrossRefGoogle Scholar
  36. Widrow, B. andYelderman, M. (1983) ECG enhancement by adaptive cancellation of electrosurgical interference.IEEE Trans.,BME-30, 392–398.Google Scholar
  37. Widrow, B. andStearns, S. D. (1985)Adaptive signal processing. Prentice-Hall, New Jersey.MATHGoogle Scholar
  38. Williams, C. S. (1986)Designing digital filters. Prentice-Hall, New Jersey.Google Scholar
  39. Woollons, D. J., English, M. J., Carroll, D. andVincent, R. (1982) Signal processing for recovery of cardiac conducting system activity.IEE Proc.,129A, 684–692.Google Scholar

Copyright information

© IFMBE 1988

Authors and Affiliations

  • H. A. M. Al-Nashash
    • 1
  • S. W. Kelly
    • 1
  • D. J. E. Taylor
    • 2
  1. 1.Medical Electronics Research Group, Electronic Engineering LaboratoriesUniversity of Kent at CanterburyCanterburyUK
  2. 2.Cardiac DepartmentKent & Canterbury HospitalCanterburyUK

Personalised recommendations