Advertisement

Medical and Biological Engineering and Computing

, Volume 31, Issue 5, pp 487–494 | Cite as

Beat-to-beat measurement and analysis of the R-T interval in 24 h ECG Holter recordings

  • G. Speranza
  • G. Nollo
  • F. Ravelli
  • R. Antolini
Physiological Measurement

Abstract

This study assesses the feasibility of beat-to-beat measurement of the R-T interval in Holter ECG recordings. The low sampling rate of the Holter system was increased by a specific interpolating filter, and the precision and accuracy of two T-wave fiducial point (T-wave maximum: Tm, T-wave end: Te) detection algorithms were compared. The results of the validation tests show better performance of the Tm measurement procedure in the presence of high noise levels. The overall process for the beat-to-beat R-T interval measurement was then tested on ECG Holter recordings collected during free and controlled respiration. Finally, the R-Tm and the corresponding R-R intervals were measured on 24h ECG recordings of healthy subjects and the spectral analysis was applied to the constructed series. Both R-R and R-Tm spectra show two main frequency components (low-frequency ∼0·1 Hz, high-frequency ∼0·25 Hz) changing in their power ratios continuously throughout the 24h period. The method described seems to provide a dynamic index of the sympatho-vagal balance at the ventricle that can be useful for a deeper understanding of ventricular repolarisation duration variability.

Keywords

Autonomic nervous system ECG Holter recording ECG signal processing Heart rate variability Q-T interval Spectral analysis Ventricular repolarisation duration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnve, S. andVallin, H. (1982) Influence of heart rate and inhibition of autonomic tone on the QT interval.Circ.,65, 435–439.bGoogle Scholar
  2. Ahnve, S. (1985) QT prolongation in acute myocardial infarction.Eur. Heart. J.,6, Suppl. D, 85–95.bGoogle Scholar
  3. Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C. andCohen, R. J. (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control.Science,213, 220–222.Google Scholar
  4. Bazett, H. C. (1920) An analysis of the time-relations of electrocardiograms.Heart,7, 353–370.Google Scholar
  5. Bianchi, A., Bontempi, B., Cerutti, S., Gianoglio, P., Comi, G. andNatali Sora, M. G. (1990) Spectral analysis of heart rate variability signal and respiration in diabetic subjects.Med. & Biol. Eng. & Comput.,28, 205–211.CrossRefGoogle Scholar
  6. Browne, K. F., Zipes, D. P., Heger, J. J. andPrystowsky, E. N. (1982) Influence of the autonomic nervous system on the Q-T interval in man.Am. J. Cardiol.,50, 1099–1103.CrossRefGoogle Scholar
  7. Crampton, R. (1978) Preeminence of the left stellate ganglion in the long Q-T syndrome.Circ.4, 769–778.Google Scholar
  8. Furlan, R., Guzzetti, S., Crivellaro, W., Dassi, S., Tinelli, M., Baselli, G., Cerutti, S., Lombardi, F., Pagani, M. andMalliani, A. (1990) Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects.,81, 537–547.Google Scholar
  9. Hayano, J., Sakakibara, Y., Yamada, M., Kamiya, T., Fujinami, T., Yokoyama, K., Watanabe, Y. andTakata, K. (1990) Diurnal variations in vagal and sympathetic cardiac control.Am. J. Physiol.258, H642-H646.Google Scholar
  10. IEC (1977) Safety of medical electrical equipment. International Electrotechnical Commission, IEC 601-1 Part 1.Google Scholar
  11. Koeleman, A. S. M., van den Akker, T. J., Ros, H. H., Janssen, R. J. andRompelman, O. (1984) Estimation accuracy of P wave and QRS complex occurrence times in the ECG: the accuracy for simplified theoretical and computer simulated waveforms.Sig. Proc.,7, 389–405.CrossRefGoogle Scholar
  12. Kovacs, S. (1985) The duration of the QT interval as a function of heart rate: a derivation based on physical principles and a comparison to measured values.Am. Heart. J.,110, 872–878.CrossRefGoogle Scholar
  13. Laguna, P., Thakor, N. V., Caminal, P., Jané, R., Hyung-Ro Yoon, Bayes de Luna, A., Marti, V. andGuindo, J. (1990) New algorithm for QT interval analysis in 24-hour Holter ECG: performance and applications.Med. & Biol. Eng. & Comput.,26, 67–73.CrossRefGoogle Scholar
  14. Ligtenberg, A. G. andKunt, M. (1983) A robust-digital QRS-detection algorithm for arrhythmia monitoring.Comput. Biomed. Res.,16, 273–286.CrossRefGoogle Scholar
  15. Lindecrantz, K. G. andLilja, H. (1988) New software QRS detector algorithm suitable for real time applications with low signal-to-noise ratios.J. Biomed. Eng.,10, 280–284.Google Scholar
  16. Merri, M., Benhorin, J., Alberti, M., Locati, E. andMoss, A. J. (1989) Electrocardiographic quantization of ventricular repolarization.Circ.,80, 1301–1308.Google Scholar
  17. Merri, M., Alberti, M., Hall, W. J., Tiltlebaum, E. L. andMoss, A. J. (1990) Repolarization duration variability: a tool to quantify the autonomic balance at the ventricle. Proc. Computers in Cardiology Conf. 1989, IEEE Computer Society Press, 339–342.Google Scholar
  18. Nollo, G., Speranza, G., Grasso, R., Bonamini, R. andAntolini, R. (1990) Dynamic measurement of the QT interval. Proc. Computers in Cardiology Conf. 1989, IEEE Computer Society Press, 463–466.Google Scholar
  19. Nollo, G., Speranza, G., Grasso, R., Bonamini, R., Mangiardi, L. andAntolini, R. (1992) Spontaneous beat-to-beat variability of the ventricular repolarization duration.J. Electrocardiol.,25, 9–17.CrossRefGoogle Scholar
  20. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto G., Dell'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S. andMalliani, A. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog.Circ. Res.,59, 178–193.Google Scholar
  21. Pomeranz, B., MaCaulay, R. J. B., Caudill, M. A., Kutz, I., Adam, D., Gordon, D., Kilborn, K. M., Barger, A. C., Shannon, D. C., Cohen, R. J. andBenson, H. (1985) Assessment of autonomic function in humans by heart rate spectral analysis.Am. J. Physiol.,248, H151-H153.Google Scholar
  22. Rompelman, O. andJanssen, R. J. (1982) Use of phase spectral information in assessment of frequency contents of ECG wave-forms.IEE Proc.,129A, 679–683.Google Scholar
  23. Sadeh, D., Shannon, D. C., Abboud, S., Saul, P., Akselrod, S. andCohen, R. J. (1987) Altered cardiac repolarization in some victims of sudden infant death syndrome.N. Engl. J. Med.,317, 1501–1505.CrossRefGoogle Scholar
  24. Sayers, B. McA. (1973) Analysis of heart rate variability.Ergonom.,16, 17–32.Google Scholar
  25. Sayers, B. McA. (1980) Signal analysis of heart rate variability. InThe study of heart-rate variabilityKitney, R. I. andRompelman, O. (Eds.), Clarendon Press, Oxford, 27–58.Google Scholar
  26. Schwartz, P. J. andWolf, S. (1978) Q-T interval prolongation as predictor of sudden death in patients with myocardial infarction.Circ.,57, 1074–1077.Google Scholar
  27. Surawicz, B. andKnowbel, S. (1984) Long QT: good, bad or indifferent?.J. Am. Cardiol.,4, 389–413.CrossRefGoogle Scholar
  28. Ward, D. E. (1988) Prolongation of the QT interval as an indicator of risk of a cardiac event.Eur. Heart J.,9G, 139–144.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • G. Speranza
    • 1
  • G. Nollo
    • 1
  • F. Ravelli
    • 1
    • 2
  • R. Antolini
    • 1
    • 2
  1. 1.Medical Biophysics Area, Istituto per la Ricerca Scientifica e Tecnologica(IRST)TrentoItaly
  2. 2.Dipartimento di Fisica Università di TrentoTrentoItaly

Personalised recommendations