Advertisement

Medical and Biological Engineering and Computing

, Volume 31, Issue 5, pp 445–448 | Cite as

Implications of the dielectrical behaviour of human blood for continuous online measurement of haematocrit

  • P. M. J. M. de Vries
  • J. W. G. Langendijk
  • P. M. Kouw
  • V. Visser
  • H. Schneider
Biomedical Engineering

Abstract

A study was designed to explore the possibility of detecting the haematocrit of blood by means of admittance measurements. The admittance and phase angle of blood kept in a measuring cell were determined at various frequencies between 60 kHz and 24 MHz. A reliable and accurate estimation of haematocrit was obtained in two ways. First, low-frequency admittance, high-frequency admittance and a factor x, which was the conductive percentage of cell content, were used. Secondly, the maximum phase angle was used. Both methods can be applied to obtain continuous on-line information about haematocrit for blood volume control during haemodialysis.

Keywords

Blood volume Electrical admittance Extracellular conductivity Haematocrit High-Frequency admittance Intracellular conductivity Low-frequency admitance Phase angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balme, L. andCavalcanti, A. C. (1983) Frequency of spectrum analysis of the complex bioelectrical impedance of blood. Proc. 6th Int. Conf. Electr. Bioimpedance. Zadar, Yugoslavia, 185–191.Google Scholar
  2. Bonnie, E., Stiller, S. andMann, H. (1986) The influence of fluid overload on vascular refilling rate in hemodialysis: continuous online measurement with the conductivity method.Progr. in Artif. Organs,1985, 135–136.Google Scholar
  3. Corten, P. M. J. (1980) Continuous registration of segmental stroke volume and wall movement of the left ventricle by means of electrical impedance measurements with an intraventricular multi-electrode catheter. Ph.D. thesis, University of Nijmegen, The Netherlands.Google Scholar
  4. de Vries, P. M. J. M., Kouw, P. M., Meijer, J. H., Oe, P. L., Schneider, H. andDonker, A. J. M. (1988) Changes in blood parameters during hemodialysis as determined by conductivity measurements.Trans. Am. Soc. Artif. Intern. Organs,34, 623–626.Google Scholar
  5. de Vries, P. M. J. M. (1989) Determination of intracellular and extracellular fluid volume by means of non-invasive conductivity measurements. Method,in vitro validation and clinical application during haemodialysis and haemofiltration. Ph.D. thesis, Free University Press, Amsterdam, The Netherlands.Google Scholar
  6. de Vries, P. M. J. M. (1992) Plasma volume changes during hemodialysis.Seminars in Dialysis,5, 42–47.Google Scholar
  7. Greenwood, R. N., Aldridge, C. andCattel, W. R. (1984) Serial blood water estimations and inline blood viscosimetry: the continuous measurement of blood volume during dialysis.Clin. Sci,66, 575–583.Google Scholar
  8. Guyton, A. C. (1986)Textbook of medical physiology, 7th edn. Saunders, London.Google Scholar
  9. Hanai, T. (1968) Electrical properties of emulsions. InEmulsion science.Sherman Ph. (Ed.), Academic Press, London, 354–477.Google Scholar
  10. Kanai, H., Haeno, M. andSakamoto, K. (1982) Electrical measurement fluid distribution in legs and arms: estimation of extracellular and intracellular fluid. Proc. IEEE Conf. Frontiers of Eng. in Health Care, 1982, 273–276.Google Scholar
  11. Kenner, T., Hinghofer, H., Leopold, H. andPogglitsch, H. (1977) Das Verhalten der Blutdichte in Relation zum Blutdruck im Tierversuch und bei der Hamodialyse von Patienten.Z. Kardiol.,66, 399–401.Google Scholar
  12. Kim, K. E., Neff, M., Cohen, B., Sommerstein, M., Chinitz, J., Onesti, G. andSwartz, C. (1970) Blood volume changes and hypotension during haemodialysis.Trans. Am. Soc. Artif. Intern. Organs. 16, 508–514.Google Scholar
  13. Meijer, J. H., de Vries, P. M. J. M., Goovaerts, H. G., Oe, P. L., Donker, A. J. M. andSchneider, H. (1989) Measurement of transcellular fluid shift during hemodialysis. Part 1 Method.Med. & Biol. Eng. & Comput.,27, 147–151.CrossRefGoogle Scholar
  14. Peura, R. A., Penney, B. C., Arcuri, J., Anderson, F. A. Jr. andWheeler, H. B. (1978) Influence of erythrocyte velocity on impedance plethysmographic measurements.,16, 147–154.CrossRefGoogle Scholar
  15. Roulet, C. andKawakami, K. (1983) Estimation of the intracellular content by electrical impedance. Proc. 6th Int. Conf. Electr. Bio-impedance. Zadar, Yugoslavia, 255–258.Google Scholar
  16. Schneditz, D. andKenner, T. (1989) A sound-speed sensor for the measurement of total protein concentration in disposable, blood-perfused tubes.J. Acoust. Soc. Am.,86, 2073–2080.CrossRefGoogle Scholar
  17. Tedner, B. andLins, L. E. (1984) Fluid volume monitoring with electrical impedance technique during hemodialysis.Artif. Organs,8, 66–71.CrossRefGoogle Scholar
  18. Visser, K. R., Lambert, R., Korsten, H. H. andZijlstra, W. G. (1976) Observations on blood flow related electrical impedance changes in rigid tubes.Pflügers Arch.,366, 289–291.CrossRefGoogle Scholar
  19. Zheng, E., Shao, S. andWebster, J. G. (1984) Impedance of skeletal muscle from 1 Hz to 1 MHz.IEEE Trans.,BME-31, 477–481.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • P. M. J. M. de Vries
    • 1
  • J. W. G. Langendijk
    • 2
  • P. M. Kouw
    • 2
  • V. Visser
    • 2
  • H. Schneider
    • 2
  1. 1.Department of Internal MedicineFree University HospitalAmsterdamThe Netherlands
  2. 2.Department of Medical PhysicsFree University HospitalAmsterdamThe Netherlands

Personalised recommendations