Advertisement

Medical and Biological Engineering and Computing

, Volume 28, Issue 5, pp 492–497 | Cite as

Influence of a frequency-dependent medium around a network model, used for the simulation of single-fibre action potentials

  • B. K. van Veen
  • W. L. C. Rutten
  • W. Wallinga
Communication

Keywords

Action potentials Frequency dependence Muscle fibres Network model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, B. A., Rutten, W. L. C., Wallinga-de Jonge, W. andBoom, H. B. K. (1986) A model study on the influence of structure and membrane capacitance on volume conduction in skeletal muscle tissue.IEEE Trans.,BME-33, 681–689.Google Scholar
  2. Albers, B. A., Rutten, W. L. C., Wallinga-de Jonge, W. andBoom, H. B. K. (1988a) Microscopic and macroscopic volume conduction in skeletal muscle tissue, applied to simulation of single fibre action potentials.Med. & Biol. Eng. & Comput.,26, 605–610.Google Scholar
  3. Albers, B. A., Rutten, W. L. C., Wallinga-de Jonge, W. andBoom, H. B. K. (1988b) Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters.,26, 611–616.Google Scholar
  4. Albers, B. A., Put, J. H. M., Wallinga, W. andWirtz, P. (1989) Quantitative analysis of single muscle fibre action potentials recorded at known distances.Electroenceph. & Clin. Neurophysiol.,73, 245–253.CrossRefGoogle Scholar
  5. Atkinson, K. E. (1978)An introduction to numerical analysis. John Wiley & Sons Inc.Google Scholar
  6. Dulhunty, A., Carter, G. andHinrichsen, C. (1984) The membrane capacity of mammalian skeletal muscle fibres.J. Muscle Res. & Cell Motility,5, 315–332.CrossRefGoogle Scholar
  7. Epstein, B. R. andFoster, K. R. (1983) Anisotropy in the dielectric properties of skeletal muscle.Med. & Biol. Eng. & Comput.,21, 51–55.Google Scholar
  8. Falk, G. andFatt, P. (1964) Linear electrical properties of stimulated muscle fibres observed with intracellular electrode.Proc. R. Soc. London,B160, 69–123.CrossRefGoogle Scholar
  9. Gielen, F. L. H., Cruts, H. E. P., Albers, B. A., Boon, K. L., Wallinga-de Jonge, W. andBoom, H. B. K. (1986) Model of electrical conductivity of skeletal muscle based on tissue structure.Med. & Biol. Eng. & Comput.,24, 34–40.CrossRefGoogle Scholar
  10. Lichtenberg, B. K. andDeLuca, C. J. (1979) Distinguishability of functionally distinct evoked neuroelectric signals on the surface of a nerve.IEEE Trans.,BME-26, 228–237.Google Scholar
  11. Moreth, G. (1964)Functions of a complex variable. Prentice Hall, Englewood Cliffs.Google Scholar
  12. Nandedkar, S. D. andStålberg, E. (1983) Simulation of single muscle fibre action potentials.Med. & Biol. Eng. & Comput.,21, 158–165.Google Scholar
  13. Rosenfalck, P. (1969)Intra- and extracellular potential fields of active nerve and muscle fibres. A physicomathematical analysis of different models. Akademisk Forlag, Copenhagen.Google Scholar
  14. Wallinga, W., Albers, B. A., Put, J. H. M., Rutten, W. L. C. andWirtz, P. (1988) Activity of single muscle fibres recorded at known distances. InElectrophysiological kinesiology.Wallinga, W., Boom, H. B. K. andde Vries, J. (Eds.), Elsevier Science Publishers BV, Amsterdam, 221–224.Google Scholar

Copyright information

© IFMBE 1990

Authors and Affiliations

  • B. K. van Veen
    • 1
  • W. L. C. Rutten
    • 1
  • W. Wallinga
    • 1
  1. 1.Department of Electrical Engineering, Biomedical Engineering DivisionUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations