Skip to main content
Log in

Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor

Part 1 Mathematical model and simulation of thepO2 basic sensor

  • Transducers and Electrodes
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The mathematical model (of an enzyme-substrate electrode with a pO2 basic sensor) is described by two coupled inhomogeneous partial differential equations and a set of boundary conditions. Generalised boundary conditions are derived, which the concentration values at the interfaces between two layers of different materials have to fulfil. This model is applicable to all enzyme-based sensors which operate with immobilised oxidase, are characterised by diffusion transport and have a cylindrosymmetrical geometry. To test this model the dependencies of the measurement characteristics of a pO2 sensor on the various design parameters were simulated. The simulation results concerning the influence exerted by the characteristics of the covering membrane and of the internal electrolyte layer as well as of the geometry of the electrodes correspond well with both the theoretical expectations and the experimental results. This mathematical model is expected to be successfully applied for simulating the behaviour of the far more complicated enzyme-substrate electrode too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area

c :

concentration

D :

diffusion coefficient

E t :

total amount of enzyme

F :

Faraday constant

H :

height

I :

sensor current

K m :

Michaelis constant

\(\tilde k\) :

\(R_{CAT} = \tilde k\Delta r\)

k :

rate constant

L :

thickness

\(\hat P\) :

permeability coefficient

p :

partial pressure

Q :

source density

r :

correlation coefficient

R :

radius,R EL=RΔr

S :

Bunsen solubility coefficient

U :

normalised intensity quantity

v :

reaction rate

V max :

maximum reaction rate per unit volume

V j :

partial coefficient at the interface between two adjacent phasesj andj+1

V :

volume

γ:

stoichiometry factor

Z :

H EL=ZΔz

1:

boundary layer

2:

external coupling membrane

3:

reaction layer

4:

internal covering membrane of the basic sensor

5:

internal electrolyte layer

B :

value in the bulk solution

CAT :

cathode

cat :

catalytic

E :

external, enzyme

EL :

electrode

G :

glucose

GR :

z co-ordinate of the interface,z i=GR iΔz

I :

internal

O :

oxygen

S :

substrate

t :

total

References

  • Atkinson, B. andLester, D. E. (1974) Enzyme rate equation for the overall rate reaction of gel-immobilized glucose oxidase particles under puffered conditions. I. Pseudo-one substrate-conditions.Biotechnol. Bioeng.,26, 1299–1320.

    Article  Google Scholar 

  • Benedek, A. A. andHeideger, W. J. (1970) Polarographic oxygen analyser response: the effect of instrument lag in the nonsteady state reaeration test.Water Res.,4, 624–629.

    Article  Google Scholar 

  • Carr, P. W. andBowers, L. D. (1980)Immobilized enzymes in analytical and clinical chemistry. John Wiley & Sons, Chichester, New York, Brisbane, Toronto.

    Google Scholar 

  • Clark, L. C. andLyons, C. (1962) Electrode systems for continuous monitoring in cardiovascular surgery.Ann. NY Acad. Sci.,102, 29–46.

    Google Scholar 

  • Engasser, J. M. andHisland, P. (1979) Diffusional effects on heterogeneous kinetics of two-substrate enzymic reactions.J. Theoret. Biol.,77, 427–440.

    Article  Google Scholar 

  • Fatt, I. (1976)Polarographic oxygen sensor: its theory of operation and its application in biology, medicine, and technology. CRC Press Inc., Cleveland.

    Google Scholar 

  • Fishman, M. M. (1980) Enzymes in analytic chemistry.Anal. Chem.,52, 185R-199R.

    Article  Google Scholar 

  • Gough, D. A., Leypoldt, J. K. andArmour, J. C. (1982) Progress toward a potentially implantable, enzyme-based glucose sensor.Diabetes Care,5, 190–198.

    Google Scholar 

  • Grunewald, W. (1966) Zur Theorie der Ausgleichsvorgänge an Pt-Elektroden und ihre mathematischen Grundlagen. Thesis, Phillipps-Universität, Marburg.

    Google Scholar 

  • Hahn, C. E. W., Davis, A. H. andAlbery, W. J. (1975) Electrochemical improvement of the performance of PO2 electrodes.Respirat. Physiol.,25, 109–116.

    Article  Google Scholar 

  • Hameka, H. F. andRechnitz, G. A. (1983) Theory of the biocatalytic membrane electrode.J. Phys. Chem.,87, 1235–1241.

    Article  Google Scholar 

  • Hutten, H., Meiners, K. andZander, R. (1982) Ein polarographisches Verfahren zur Bestimmung von Sauerstoff-Löslichkeitskoeffizienten in wäßrigen Elektrolytlösungen.Biomed. Techn.,27, 7–13.

    Article  Google Scholar 

  • Jochum, P. andKowalski, B. (1982) A coupled two-compartment model for immobilized enzyme electrodes.Anal. Chim. Acta.,144, 25–38.

    Article  Google Scholar 

  • Lee, S. B. andRyu, D. D. Y. (1980) External diffusion effects on the kinetic constants of immobilized enzyme systems.J. Theoret. Biol.,84, 259–279.

    MathSciNet  Google Scholar 

  • Lemke, K., Falk, E.-M., Haker, H. andSeel, H. (1977) Enzymelektrode-Glukoseelektrode.Z. Med. Labor.-Diagn.,18, 80–101.

    Google Scholar 

  • Lemke, K. andGoerner, M. (1983) Elektrochemische Elektroden als Glukosesensoren für die künstliche ß-Zelle.Wiss. Z. TH Ilmenau,29, 57–72.

    Google Scholar 

  • Lemke, K. (1988) Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor. Part 2 Mathematical simulation of the glucose oxidase/glucose electrode.Med. & Biol. Eng. & Comput.,26, 533–540.

    Google Scholar 

  • Leypoldt, J. K. andGough, D. A. (1982) Diffusion and limiting substrate in two-substrate immobilized enzyme systems.Biotechnol. Bioeng.,24, 2705–2719.

    Article  Google Scholar 

  • Leypoldt, J. K. andGough, D. A. (1984) Model of a two-substrate enzyme electrode for glucose.Anal. Chem. 56, 2896–2904.

    Article  Google Scholar 

  • Linek, V. andBeneš, P. (1977) Multiregion, multilayer, nonuniform diffusion model of an oxygen electrode.Biotechnol. Bioeng.,19, 741–748.

    Article  Google Scholar 

  • Mancy, K. H., Okun, D. A. andReilley, C. N. (1962) A galvanic cell oxygen analyser.J. Electroanal. Chem.,4, 65–92.

    Article  Google Scholar 

  • Marsal, D. (1976) Die numerische Lösung partieller Differential-gleichungen. BI Wissenschaftsverlag, Mannheim/Wien/Zürich.

    Google Scholar 

  • Mell, L. D. andMaloy, J. T. (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system.Anal. Chem.,47, 299–307.

    Article  Google Scholar 

  • Racine, P. andMindt, W. (1971) On the role of substrate diffusion in enzyme electrodes.Experientia,18, 525–534.

    Google Scholar 

  • Schneiderman, G. andGoldstick, T. K. (1978) Oxygen electrode design criteria and performance characteristics: recessed cathode.J. Appl. Physiol.,45, 145–154.

    Google Scholar 

  • Scott, I. L., Black, A. M. S., Maynard, P. andHahn, C. E. W. (1983) Pulse polarography and intravascular oxygen electrodes.Br. J. Anaesth.,55, 559–567.

    Google Scholar 

  • Stuck, J. D., Howell, J. A. andCullinan, H. T. (1971) Analysis of oxygen diffusion to a measuring probe in animal tissue.J. Theoret. Biol.,31, 509–514.

    Article  Google Scholar 

  • Suzuki, Sh., Satoh, J. andKarube, J. (1982) Recent trends of biosensors in Japan.Appl. Biochem. & Biotechnol.,7, 147–155.

    Google Scholar 

  • Updike, S. J. andHicks, G. P. (1967) The enzyme electrode, a miniature chemical transducer using immobilized enzyme activity.Nature,214, 986–988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, K. Mathematical simulation of an amperometric enzyme-substrate electrode with apO2 basic sensor. Med. Biol. Eng. Comput. 26, 523–532 (1988). https://doi.org/10.1007/BF02441921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441921

Keywords

Navigation