Skip to main content
Log in

High-frequency oscillatory pressure/flow relationship in the airways of laryngo-tracheo-bronchial tree casts

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

We measured the pressure/flow relationships in a cast of human upper and central airways at high frequencies (3, 5, 8, 10, 12 and 15 Hz) and low stroke volumes (70, 110, 150 and 230 cm3). A particular effort was made to analyse the effect of the larynx on the pressure/flow relationships by comparing the experimental measurements obtained both with and without larynx. The larynx was found to have an effect on airflow patterns, increasing both turbulence and airway resistance. The phase lead of pressure relative to flow was smaller in the presence of the larynx than in its absence, indicating an increase in the resistive part of impedance by the larynx. In a dimensionless Moody plot of peak pressure and peak flow, data obtained at the various frequencies and stroke volumes formed a single curve as the steady-flow theory predicts, indicating an appearance of quasi-steady-state behaviour. In this case, the tracheal Reynolds number alone governs the dimensionless pressure drop. Plotted against Re/a (ratio of Reynolds and Womersley numbers) the normalised instantaneous pressure drop was generally smooth throughout the range of Re/α except for the appearance of a transition at the lowest frequency suggesting the onset of turbulent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant ranging between 1 and 2

Cd :

discharge coefficient

d :

diameter of the trachea

f :

oscillation frequency

Fn :

function

K :

constant depending on airway geometry

ΔP :

pressure difference

ΔP m :

maximum pressure drop

Re :

Reynolds number

Re m :

maximum Reynolds number in the trachea

S :

cross-sectional area

u :

average velocity

U m :

maximum mean velocity in the trachea

V s :

stroke volume

\(\dot V\) :

flow rate

ω:

angular frequency

α:

Womersely parameter

α* :

turbulent unsteadiness parameter

μ:

dynamic viscosity

ν:

kinematic viscosity

v * :

eddy viscosity

σ:

density

ϕ:

phase shift

References

  • Akhavan, R. andKamm, R. D. (1984) Pressure excursions during flow in a branching network of tubes.J. Appl. Physiol.,57, 665–673.

    Google Scholar 

  • ben Jebria, A., Tabka, Z. andTechoueyres, P. (1987) Steady pressure-flow relationship in a cast model of the upper and central human airways.Int. J. Bio-Med. Comput.,20, 97–105.

    Article  Google Scholar 

  • Brancatisano, T., Collett, P. W. andEngel, L. A. (1983) Respiratory movements of the vocal cords.J. Appl. Physiol.,54, 1268–1267.

    Article  Google Scholar 

  • Dekker, E. (1961) Transition between laminar and turbulent flow in human trachea.,16, 1060–1064.

    Google Scholar 

  • Drazen, J. M., Loring, S. H. andIngram, R. H. (1976) Distribution of pulmonary resistance: effect of gas density, viscosity and flow-rate.,41, 385–395.

    Google Scholar 

  • Gavriely, N., Solway, J., Loring, S. H., Butler, J. P., Slutsky, A. S. andDrazen, J. M. (1985) Pressure-flow relationships of endotracheal tubes during high-frequency ventilation.,59, 3–11.

    Google Scholar 

  • Hino, M., Sawamoto, M. andTakasu, S. (1976) Experiments on transition to turbulence in oscillatory pipe flow.J. Fluid Mech.,75, 193–207.

    Article  Google Scholar 

  • Isabey, D. andChang, H. K. (1981) Steady and unsteady pressure-flow relationships in central airways.J. Appl. Physiol.,51, 1338–1348.

    Google Scholar 

  • Jaeger, M. J. andMatthys, H. (1970) The pressure flow characteristics of the human airways. InAirway dynamics, physiology and pharmacology.Bouhuys, A. (Ed.), Thomas, Springfield, Illinois, 21–32.

    Google Scholar 

  • Jaffrin, M. Y. andHennessey, T. V. (1972) Pressure distribution in a model of the central airways for sinusoidal flow.Bull. Physiopath. Resp.,8, 375–390.

    Google Scholar 

  • Jaffrin, M. Y. andKesic, P. (1974) Airway resistance: a fluid mechanical approach.J. Appl. Physiol.,36, 354–361.

    Google Scholar 

  • Menon, A. S., Weber, M. E. andChang, H. K. (1985) Effect of the larynx on oscillatory flow in the central airways: a model study.,59, 160–169.

    Google Scholar 

  • Merkli, P. andThomann, H. (1975) Transition to turbulence in oscillating pipe flow.J. Fluid Mech. 68, 567–575.

    Article  Google Scholar 

  • Olson, D. E., Iliff, L. D. andSudlow, M. F. (1972) Quelques aspets physiques de l'écoulement gazeux dans les voies aériennes centrales.Bull. Physiopath. Resp. 8, 391–408.

    Google Scholar 

  • Pedley, T. J., Schroter, R. C. andSudlow, M. F. (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways.Respirat. Physiol.,9, 387–405.

    Article  Google Scholar 

  • Pedley, T. J., Schroter, R. C. andSudlow, M. F. (1977) Gas flow and mixing in the airways. InBioengineering aspects of the lung.West, J. B. (Ed.), Marcel Dekker, New York, 163–265.

    Google Scholar 

  • Pedley, T. J. (1977) Pulmonary fluid mechanics.Ann. Rev. Fluid Mech.,9, 229–274.

    Article  MATH  Google Scholar 

  • Reynolds, D. B. andLee, J. S. (1981) Steady pressure flow relationship or a model of the canine bronchial tree.J. Appl. Physiol.,51, 1072–1079.

    Google Scholar 

  • Rohrer, F. (1915) Ser Stromungswiderstand in den menschlichen Atmwegen und der Einfleis der unregelmassigen Verzweigung des bronchial systems auf den Atmungsverlauf in verschifdenen Lungenbezirken.Pflügers Arch.,162, 225–299.

    Article  Google Scholar 

  • Schroter, R. C. andSudlow, M. F. (1969) Flow patterns in models of the human bronchial airways.Respirat. Physiol.,7, 341–355.

    Article  Google Scholar 

  • Simone, A. F. andUltman, J. S. (1982) Longitudinal mixing by the human larynx.,49, 187–203.

    Article  Google Scholar 

  • Slutsky, A. S., Berdine, G. G. andDrazen, J. M. (1980) Steady flow in a model of human central airways.J. Appl. Physiol.,49, 417–423.

    Google Scholar 

  • Stanescu, D. C., Pattijn, J., Clement, J. andvan de Woestijne, K. P. (1972) Glottis opening and airway resistance.,32, 460–466.

    Google Scholar 

  • Wood, L. D. H., Engel, L. A., Griffin, P., Despas, P. andMacklem, P. T. (1976) Effect of gas physical properties and flow on lower pulmonary resistance.,41, 234–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jebria, A.B., Choukroun, M.L., Tabka, Z. et al. High-frequency oscillatory pressure/flow relationship in the airways of laryngo-tracheo-bronchial tree casts. Med. Biol. Eng. Comput. 26, 476–482 (1988). https://doi.org/10.1007/BF02441914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441914

Keywords

Navigation