Advertisement

Medical and Biological Engineering and Computing

, Volume 18, Issue 6, pp 709–718 | Cite as

Multi-branched model of the human arterial system

  • A. P. Avolio
Article

Abstract

A model of the human arterial system was constructed based on the anatomical branching structure of the arterial tree. Arteries were divided into segments represented by uniform thin-walled elastic tubes with realistic arterial dimensions and wall properties. The configuration contains 128 segments accounting for all the central vessels and major peripheral arteries supplying the extremities including vessels of the order of 2·0 mm diameter. Vascular impedance and pressure and flow waveforms were determined at various locations in the system and good agreement was found with experimental measurements. Use of the model is illustrated in investigating wave propagation in the arterial system and in simulation of arterial dynamics in such pathological conditions as arteriosclerosis and presence of a stenosis in the femoral artery.

Keywords

Arterial branching Arterial model Elastic tubes Vascular impedance Wave reflection 

Nomenclature

ϱ

blood density

co

pulse wave velocity

σ

Poisson ratio for arterial wall

F10

the expression\(\frac{{2J_1 \left( {\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)}}{{\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} J_0 \left( {\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)}}\). whereJ 0 andJ 1 are Bessel functions of the first kind, and order zero and one, respectively, and\(\alpha = R_0 \sqrt {{{\omega \rho } \mathord{\left/ {\vphantom {{\omega \rho } \mu }} \right. \kern-\nulldelimiterspace} \mu }} \)

λ

propagation constant

ω

angular frequency

E

Young's modulus of arterial wall

h

wall thickness

R0

internal radius of arterial segment

ηw

viscoelasticity of the arterial wall

Γ

reflection coefficient

μ

blood viscosity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avolio, A. P., O'Rourke, M. F., Mang, K., Bason, P. andGow, B. S. (1976) A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs.Amer. J. Physiol. 230, 868.Google Scholar
  2. Bergel, D. H. (1961) The dynamic elastic properties of the arterial wall.J. Physiol. 156, 458Google Scholar
  3. Frank, O., (1899) Die Grundfurm des artiriellen Puls.Zeitschrift fur Biologie. 37, 483Google Scholar
  4. Gupta, T. C. andWiggers, C. J., (1951) Basic hemodynamic changes produced by aortic coarctation in different degrees.Circ. 3, 17Google Scholar
  5. Hales, S., (1733) ‘Haemastatiks’, Hafner Publishing Co., London.Google Scholar
  6. Hardung, V. (1962) Propagation of pulse waves in viscoelastic tubings.In W. F. Hamilton andP. Dows (eds)Handbook of Physiology, Circulation Vol. 1, Amer. Physiol. Soc.Google Scholar
  7. Jager, G. N., Westerhof, N., andNoordergraaf, A. (1965) Oscillatory flow impedance in an electrical analog of the arterial system: representation of sleeve effect and non-newtonian properties of blood.Circ. Res. 26, 121Google Scholar
  8. Little, J. M., Sheil, A. G. R., Loewenthal, J. andGoodman, A. H. (1968) Prognostic value of intraoperative blood flow measurements in femoropopliteal bypass vein grafts.The Lancet,2, 648CrossRefGoogle Scholar
  9. McDonald, D. A. (1974) ‘Blood flow in Arteries’, (Arnold, London, 2nd edn.)Google Scholar
  10. Mills, C. J., Gabe, I. T., Gault, J. H., Mason, P. T., Ross, J., Braunwald, E. andShillingford, J. P., (1970) Pressure-Flow relationships and vascular impedance in man.Cardiovasc. Res. 4, 405CrossRefGoogle Scholar
  11. Noordergraaf, A., Verdouw, P. D. andBoom, H. B. C. (1963) The use of an analog computer in a circulation model.Prog. Card. Diseases 5, 419Google Scholar
  12. O'Rourke, M. F. (1965) ‘Pressure and flow in arteries’ M.D. Thesis, University of SydneyGoogle Scholar
  13. O'Rourke, M. E., andTaylor, M. G., (1966) Vascular impedance of the femoral bed.Circ. Res. 18: 126Google Scholar
  14. O'Rourke, M. E., (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system.J. Appl. Physiol. 23, 139.Google Scholar
  15. Rideout, V. C. andDick, D. E., (1967) Differencedifferential equations for fluid flow in distensible tubes.IEEE Trans, Biomed, Eng. BME-14, 171.Google Scholar
  16. Taylor, M. G., (1959) The experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall; tobether with an analysis of the characteristics required in an electrical analogue.Phys. Med. Biol. 4, 63CrossRefGoogle Scholar
  17. Taylor, M. G., (1966) The input impedance of an assembly of randomly branching elastic tubes.Biophys. J 6, 29CrossRefGoogle Scholar
  18. Westerhof, N. andNoordergraf, A., (1970) Arterial viscoelasticity: a generalised model.J. Biomech. 3, 357CrossRefGoogle Scholar
  19. Womersley, J. R. (1957) The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Centre, Technical Report. WADC-TR56-614Google Scholar
  20. Young, D. F., Cholvin, N. R., Roth, A. C. (1975): Pressure drop across artificially induced stenosis in the femoral arteries of dogs.Circ. Res. 36, 735.Google Scholar

Copyright information

© IFMBE 1980

Authors and Affiliations

  • A. P. Avolio
    • 1
  1. 1.Medical Professorial UnitSt. Vincent's HospitalSydneyAustralia

Personalised recommendations