Note on the spectral analysis of neural spike trains

  • P. J. A. Lago
  • N. B. Jones


The links between the estimation of the spectral density of a train of δ functions, the estimation of the spectral density of a point process and that of a discrete random signal are established. It shows in particular that it is possible to reduce the estimation of the spectral density of a neural spike train to that of a regularly sampled 0–1 signal with consequent computational advantages. In addition, a technique involving decimation for speeding up the estimation of the spectral density without much additional error is proposed.


Neurons Spectral analysis Spike trains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, M. S. (1963) The spectral analysis of point processes.J. Roy. Statist. Soc. B,25, 264–280.zbMATHMathSciNetGoogle Scholar
  2. Clamman, H. P. (1969) Statistical analysis of motor unit firing patterns in human skeletal muscle.Biophysical J.,9, 1233–1251.CrossRefGoogle Scholar
  3. French, S. A. andHolden, A. V. (1970) Alias-free sampling of neuronal spike trains.Kybernetik,8, 165–171.CrossRefGoogle Scholar
  4. Gaster, M. andRoberts, J. B. (1979) Rapid method of forming spectra from regularly sampled records by rectangular wave transforms.Proc. IEE,126, 658–663.Google Scholar
  5. Gestri, G. (1972) Autocorrelation and spectrum of the modulated retinal discharge: a comparison of theoretical and experimental results.Kybernetik,11, 77–85.Google Scholar
  6. Huggins, W. H. (1957) Signal flowgraphs and random signals.Proc. IRE,45, 74–86.CrossRefGoogle Scholar
  7. Kranz, H. andBaumgartner, G. (1974) Human alpha motoneurone discharge, a statistical analysis.Brain Research,67, 324–329.CrossRefGoogle Scholar
  8. Lago, P. (1978) Mathematical models of aspects of the electrical and mechanical activity of human muscle, D.Phil. thesis, University of Sussex.Google Scholar
  9. Lago, P. andJones, N. B. (1977) The effect of motor unit firing time statistics on e.m.g. spectra.Med. & Biol. Eng. & Comput.,15, 648–685.Google Scholar
  10. Shiavi, R. andNegin, M. (1974) Multivariate analysis of simultaneously active motor units in human skeletal muscle.Biol. Cybernetiks,20, 9–16.CrossRefGoogle Scholar
  11. Zadeh, L. A. (1957) Signals flowgraphs and random signals.Proc. IRE,45, 1413–1414.Google Scholar

Copyright information

© IFMBE 1982

Authors and Affiliations

  • P. J. A. Lago
    • 1
    • 2
  • N. B. Jones
    • 1
    • 2
  1. 1.Grupo de Matemática Aplicade de Faculdade de Ciéncias da Universidade do PortoPortoPortugal
  2. 2.Graduate Division of Biomedical EngineeringUniversity of SussexEngland

Personalised recommendations