Skip to main content
Log in

Experimental and theoretical models of flow during forced expiration: pressure and pressure history dependence of flow rate

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Flow characteristics have been studied in elastic mono- and bialveolar lung models made from tubes and balloons in series. Flow rate variation is explained on the basis of two successive limiting factors governed by the mutual interaction of tube mechanical properties and flow characteristics, i.e. wave-speed and viscous limitations induced by the tube collapse. A numerical model of flow in an elastic monoalveolar structure has been developed. It is generally admitted that a remarkable feature of forced expiration is that the flow rate is ‘effort independent’ for approximately the lower 80 per cent of vital capacity. The present results, which describe a continuous process, suggest that the flow rate depends mostly on the external pressure and pressure history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

major semi-axis of the tube

A :

tube cross-sectional area

c :

wave speed

E :

elastic modulus of the tube

h :

tube wall thickness

k :

tube eccentricity

K :

bending stiffness

L :

tube length

p c :

contact pressure

p f :

head loss

p l :

osculation pressure

p :

transmural pressure

Q :

volume flow rate

Re :

Reynolds number

S=u/c :

speed index

t :

time

u :

axial fluid velocity

V :

volume

x :

axial distance along the tube

Δp :

pressure difference

μ:

fluid viscosity

ρ:

fluid density

χ:

tube perimeter

A :

balloon or alveoli

e :

external

i :

internal

n :

outlet of the tube

p :

peak value

t :

thoracic

0:

neutral value

1:

inlet of the tube

*:

critical value

∧:

normalised variable

References

  • Bonis, M. (1979) Ecoulement visquex permanent dans un tube collabable elliptique. Thése de Doctorat d'Etat, Université de Technologie de Compiègne.

  • Bonis, M. andRibreau, C. (1981) Wave speed in non-circular collapsible ducts.J. Biomech. Eng.,103, 27–31.

    Google Scholar 

  • Bonis, M., Ribreau, C. andVerchery, G. (1981) Etude expérimentale et théorique de l'aplatissement d'un tube élastique en dépression.J. Mec. Appl.,5, 123–144.

    MATH  Google Scholar 

  • Boris, J. P. (1976) Flux corrected transport modules for solving generalized continuity equations. Naval Research Laboratory, NRL Memorandum Report 3237, Washington, DC.

  • Bouhuys, A. (1974)Breathing. Grune & Stratton, New York, London.

    Google Scholar 

  • Clement, J. andVan de Woestijne, K. P. (1971) Variability of maximum expiratory flow volume curves and effort independency.J. Appl. Physiol.,31, 55–62.

    Google Scholar 

  • Clement, J., Afschrift, M., Pardaens, J. andvan de Woestijne, K. P. (1973) Peak expiratory flow rate and rate of change of pleural pressure.Respir. Physiol.,18, 222–237.

    Article  Google Scholar 

  • Clement, J., Pardaens, J. andvan de Woestijne, K. P. (1974) Expiratory flow rates, driving pressures and time-dependent factors. Simulation by means of a model. ——Ibid.,20, 353–369.

    Article  Google Scholar 

  • Downing, W. G. (1980) A new view of the dynamic mechanisms of maximum expiratory gas flow in the lungs. InBiofluid Mechanics 2.Schneck, D. J. (Ed.), Plenum Press, New York.

    Google Scholar 

  • Elliott, E. A. andDawson, S. V. (1977) Test of wave-speed theory of flow limitation in elastic tubes.J. Appl. Physiol.,43, 516–522.

    Google Scholar 

  • Flaherty, J. E., Keller, J. B. andRubinow, S. I. (1972) Post buckling behavior of elastic tubes and rings with opposite sides in contact.SIAM J. Appl. Math.,23, 446–455.

    Article  MATH  Google Scholar 

  • Fry, D. L., Ebert, R. V., Stead, W. W. andBrown, C. C. (1954) The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema.Am. J. Med.,16, 80–97.

    Article  Google Scholar 

  • Jones, J. G., Fraser, R. B. andNadel, J. A. (1975) Prediction of maximum expiratory flow rate from area-transmural pressure curve of compressed airway.J. Appl. Physiol.,38, 1002–1011.

    Google Scholar 

  • Kamm, R. D. andShapiro, A. S. (1979) Unsteady flow in a collapsible tube subjected to external pressure or body forces.J. Fluid Mech.,95, 1–78.

    Article  MATH  Google Scholar 

  • Knudson, R. J. andKnudson, D. E. (1973) Pressure-flow relationships in the isolated canine trachea.J. Appl. Physiol.,35, 804–812.

    Google Scholar 

  • Knudson, R. J., Lebowitz, M. D., Holberg, C. J. andBurrows, B. (1983) Changes in the normal maximal expiratory flow volume curve with growth and aging.Am. Rev. Respir. Dis.,127, 725–734.

    Google Scholar 

  • Lambert, R. K., Wilson, T. A., Hyatt, R. E. andRodarte, J. R. (1982) A computational model for expiratory flow.J. Appl. Physiol.,52, 44–56.

    Google Scholar 

  • Lorino, H., Harf, A., Atlan, G., Brault, Y., Lorino, A. M., Laurent, D. (1980) Computer determination of thoracic gas volume using plethysmographic ‘thoracic flow’. ——Ibid.,48, 911–916.

    Google Scholar 

  • Macklem, P. T. andWilson, N. J. (1965) Measurement of intrabronchial pressure in man. ——Ibid.,20, 653–663.

    Google Scholar 

  • Macklem, P. T. andMead, J. (1968) Factors determining maximum expiratory flow in dogs. ——Ibid.,25, 159–169.

    Google Scholar 

  • Mead, J., Turner, J. M., Macklem, P. T. andLittle, J. B. (1967) Significance of the relationship between lung recoil and maximum expiratory flow. ——Ibid.,22, 95–108.

    Google Scholar 

  • Pedersen, O. F., Lyager, S. andIngram, R. H. (1985) Airway dynamics in transition between peak and maximal expiratory flow. ——Ibid.,59, 1733–1746.

    Google Scholar 

  • Ribreau, C. andBonis, M. (1978) Propagation et écoulement dans les tubes collabables. Contribution à l'étude des vaisseaux sanguins.J. Fr. Biophys. Med. Nuc.,2, 153–158.

    Google Scholar 

  • Shapiro, A. H. (1977) Steady flow in collapsible tubes.J. Biomech. Eng.,97, 126–147.

    Google Scholar 

  • Thiriet, M. andBonis, M. (1983) Experiments on flow limitation during forced expiration in a monoalveolar lung model.Med. & Biol. Eng. & Comput.,21, 681–687.

    Google Scholar 

  • Thiriet, M. andHatzfeld, C. (1984) Représentations graphiques de l'épreuve d'expiration forcée. Réconciliation des anciens et des modernes.Bull. Eur. Physiopathol. Respir.,20, 569–570.

    Google Scholar 

  • Thiriet, M. andBonis, M. (1985) Etude expérimentale de l'écoulement transitoire dans un modèle de poumon bialvéolaire.Innov. Tech. Biol. Med.,6, 193–205.

    Google Scholar 

  • Thiriet, M., Chang, H. K., Chartrand, D., Davis, L. andMaarek, J. M. (1986) Tracheal deformation during forced expiration.Proc. IEEE,3, 1557–1558.

    Google Scholar 

  • West, J. B. (1975)Respiratory physiology. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Wilson, T. A., Fredberg, J. J., Rodarte, J. R. andHyatt, R. E. (1985) Interdependence of regional expiratory flow.J. Appl. Physiol.,59, 1924–1928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

between the 15th August 1987 and the 31st August 1988, and at other periods to him at INSERM U. 296, Faculté de Médecine, 8 av Gl Sarrail, 94010 Creteil Cedex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiriet, M., Bonis, M., Adedjouma, A.S. et al. Experimental and theoretical models of flow during forced expiration: pressure and pressure history dependence of flow rate. Med. Biol. Eng. Comput. 25, 551–559 (1987). https://doi.org/10.1007/BF02441748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441748

Keywords

Navigation