Doppler ultrasound spectral power density distribution: measurement artefacts in steady flow

  • R. S. Thompson
  • G. K. Aldis
  • I. W. Linnett


Continuous-wave Doppler Doppler spectrum Spectral broadening Steady flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bascom, P. A. J., Cobbold, R. S. C. andRoelofs, B. H. M. (1986) Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach.Ultrasound in Med. & Biol.,12, 387–395.CrossRefGoogle Scholar
  2. Batchelor, G. K. (1967)An introduction to fluid dynamics. Cambridge University Press.Google Scholar
  3. Douville, Y., Arenson, J. W., Johnston, K. W., Cobbold, R. S. C. andKassam, M. (1983) Critical evaluation of continuous wave Doppler probes for carotid studies.J. Clin. Ultrasound,11, 83–90.Google Scholar
  4. Gill, R. W. (1979) Performance of the mean frequency Doppler modulation.Ultrasound in Med. & Biol.,5, 237–247.CrossRefGoogle Scholar
  5. Gill, R. W. (1982) Accuracy calculations for ultrasonic pulsed Doppler blood flow measurements.Australasian Physical & Eng. Sci. in Med.,5, 51–57.Google Scholar
  6. Ku, D. N., Giddens, D. P., Phillips, D. J. andStrandness, D. E. (1985) Hemodynamics of the normal human carotid bifurcation:in vitro andin vivo studies.Ultrasound in Med. & Biol.,11, 13–26.CrossRefGoogle Scholar
  7. Newhouse, V. L., Varner, L. W. andBendick, P. J. (1977) Geometrical spectrum broadening in ultrasonic Doppler systems.IEEE Trans.,BME-24, 478–480.Google Scholar
  8. Poots, J. K., Johnston, K. W., Cobbold, R. S. C. andKassam, M. (1986) Comparison of CW Doppler ultrasound spectra with the spectra derived from a flow visualization model.Ultrasound in Med. & Biol.,12, 125–133.CrossRefGoogle Scholar
  9. Schlichting, H. (1979)Boundary-layer theory, 7th edn. McGraw-Hill, New York.Google Scholar
  10. Segre, G. andSilverberg, A. (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation.J. Fluid Mech.,14, 136–157.MATHCrossRefGoogle Scholar
  11. Selfridge, A. R. (1985) Approximate material properties in isotropic materials.IEEE Trans.,SU-32, 381–394.Google Scholar
  12. Sheldon, C. D., Murie, J. A. andQuin, R. O. (1983) Ultrasonic Doppler spectral broadening in the diagnosis of internal carotid artery stenosis.Ultrasound in Med. & Biol.,9, 575–580.CrossRefGoogle Scholar
  13. Thompson, R. S. andStevens, R. J. (1989) Mathematical model for interpretation of Doppler velocity waveform indices.Med. & Biol. Eng. & Comput.,27, 269–276.Google Scholar
  14. Wijn, P. F. F., van der Sar, P., Gootzen, T. H. J. M., Tilmans, M. H. J. andSkotnicki, S. H. (1987) Value of the spectral broadening index in continuous wave Doppler measurements. —Ibid.,25, 377–385.Google Scholar

Copyright information

© IFMBE 1990

Authors and Affiliations

  • R. S. Thompson
    • 1
  • G. K. Aldis
    • 2
  • I. W. Linnett
    • 3
  1. 1.Department of Obstetrics & GynaecologyUniversity of Sydney at Westmead HospitalWestmeadAustralia
  2. 2.Department of Mathematics, University College, University of New South WalesAustralian Defence Force AcademyCampbellAustralia
  3. 3.Department of Mechanical Engineering, University CollegeUniversity of New South Wales, Australian Defence Force AcademyCampbellAustralia

Personalised recommendations