Skip to main content
Log in

Pressures generated by ribcage and abdominal compressions during cardiopulmonary resuscitation

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

When the ribcage and abdomen are compressed during cardiopulmonary resuscitation (CPR), the effect on intrathoracic pressure, and therefore on haemodynamics, cannot be quantitatively predicted without a physiologically based mathematical model of chest wall dynamics. Using such a model, we compared model simulations of pleural Ppl and abdominal Pab pressures with those from dog experiments in which the compression of the ribcage was delayed from 0 to 500 ms after compression of the abdomen. Integrals of Ppl and transdiaphragmatic pressure, Pdi=Pab−Ppl, over their positive and negative values during a cycle were chosen as indices of driving pressures for cardiac output. Both from the model output and experimental data, we found that the positive ppl integral PPI tends to increase with a longer delay between ribcage and abdominal compressions. The negative Ppl integral NPI, however, tends to decrease according to the model predictions and data. Furthermore, the positive and negative integrals of Pdl also tend to change with delay time in the opposite way, as shown by both the model simulations and the experiments. Our results show that chest wall tissues modify the externally applied pressures, thereby not allowing us to use the externally applied pressure sources directly as the driving pressure of the cardiovascular system under study. The optimal conditions for haemodynamics during CPR require a compromise between the positive and negative integral indices. Prediction of the optimal haemodynamics from externally applied pressures requires the coupling of appropriate physiological models of chest wall dynamics and haemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

pressure (force/area)

V :

volume

Z :

impedance function

σ:

stress (force/area)

\(\hat \sigma \) :

active stress (force/area)

ϕ:

diaphragm position ratio,A rt /A rc

Φ:

area ratio,A rd /(A rb +A rd )

X i :

distance of structurei

δX i :

displacement from operating point of structurei

K 1i ,K 2i ,K 3i ,K 4i :

empirical constants of pressure/displacement relationship of structure

alv :

alveolar

ab :

abdomen

ao :

airway opening

aw :

airway

di :

diaphragm

l :

lung

pl :

pleural

rc :

rib cage

rd :

diaphragm apposed ribcage

rl :

moving lung apposed ribcage

vr :

ribcage vest

va :

abdominal vest

References

  • Babbs, C. F., Ralston, S. H. andGeddes, L. S. (1984a) Theoretical advantages of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation.Ann. Emerg. Med.,13, 660–671.

    Article  Google Scholar 

  • Babbs, C. F., Weaver, J. C., Ralston, S. H. andGeddes, L. A. (1984b) cardiac, thoracic, and abdominal pump mechanisms in CPR: studies in an electrical model of the circulation.Am. J. Emerg. Med.,2, 299–308.

    Article  Google Scholar 

  • Ben-Haim, S. M., Anutchnik, C. andDinnar, U. (1988) A computer controller for vest cardiopulmonary resuscitation (CPR).IEEE Trans.,BME-35, 413–416.

    Google Scholar 

  • Ben-Haim, S. A. andSaidel, G. M. (1989) A mathematical analysis of chest wall static and quasi static mechanics.Ann. Biomed. Eng., (in press).

  • Ben-Haim, S. A., Shofti, R., Ostrow, B. andDinnar, U. (1990). The effect of vest cardiopulmonary resuscitation (CPR) rate on cardiac output and coronary blood flow.Crit Care Med., (in press).

  • Beyar, R., Kishon, Y. andDinnar, U. (1983) Cardiopulmonary resuscitation mechanisms: a computer model. Biomed. Eng. Trans: Proc. of the 5th Ann. Conf. Front. of Eng. & Comput. in Health Care, Columbus, Ohio, USA.

  • Beyar, R., Kimmel, E., Sideman, S., Dinnar, Y. andKishon, Y. (1984) Effect of thoracic and abdominal pressure waves on blood flow in cardiopulmonary resuscitation.Int. J. Heat Mass Transfer,27, 1473–1483.

    Article  Google Scholar 

  • Chandra, N., Cohen, J. M. andTsilik, J. (1979) Negative air way pressure between compressions augments carotid flow during CPR.Circ.,50, 46–50.

    Google Scholar 

  • Chandra, N., Rudikoff, M. andWeisfeldt, M. L. (1980) Simultaneous chest compression and ventilation at high airway pressure during cardiopulmonary resuscitation.Lancet,1, 175–178.

    Article  Google Scholar 

  • Chandra, N., Weisfeldt, M. L., Tsitlik, J., Vaghaiwalla, F., Snyder, L. D., Hoffecker, M. andRudikoff, M. (1981) Augmentation of carotid flow during CPR by ventilation at high airway pressure simultaneous with chest compression.Am. J. Cardiol.,48, 1053–1063.

    Article  Google Scholar 

  • Criley, J. M., Blaufuss, A. H. andKissel, G. L. (1976) Cough induced cardiac compression.JAMA,236, 1246–1250.

    Article  Google Scholar 

  • Hubay, C. A., Waltz, R. C., Breecher, G. A., Praglin, J. andHingson, A. (1954) Circulatory dynamics of venous return during positive-negative pressure respiration.Anesthesiol.,15, 445–461.

    Google Scholar 

  • Koehler, R. C., Chandra, N., Guerci, A. D., Tsitlik, J., Traystman, R. J., Rogers, M. C. andWiesfeldt, M. L. (1983) augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs.Circ.67, 266–275.

    Google Scholar 

  • Kouwenhoven, W. B., Jude, J. R. andKnickerbocker, G. G. (1960) Closed chest cardiac massage.JAMA,173, 1064–1067.

    Google Scholar 

  • Lin, C. K., Levenson, H. andYamashiro, S. M. (1987) Optimization of coronary blood flow during cardiopulmonary resuscitation (CPR).IEEE Trans.,BME-34, 473–481.

    Google Scholar 

  • Luce, J. M., Ross, B. K., O'Quin, R. J., Culver, B. H., Sivarajan, M., Amory, D. W., Niskanen, R. A., Alferness, C. A., Kirk, W. L., Pierson, L. B. andButler, J. (1983) Regional blood flow during cardiopulmonary resuscitation in dogs using simultaneous and nonsimultaneous compression and ventilation.Circ.,67, 258–265.

    Google Scholar 

  • Mashiro, I., Cohn, J. N., Heckel, R., Nelson, R. R. andFranciosa, J. A. (1978) Left and right ventricular dimensions during ventricular fibrillation in the dog.Am. J. Physiol.,235, H231-H236.

    Google Scholar 

  • Milic-Emili, J., Mead, J. M., Turner, J. andGlauser, E. M. (1964) Improved technique for estimating pleural pressure from esophageal balloons.J. Appl. Physiol.,19, 207–211.

    Google Scholar 

  • Niemann, J. T., Rosborough, J., Hansknecht, M., Garner, D. andCriley, J. M. (1981) Pressure-synchronized cineangiography during experimental cardiopulmonary resuscitation.Circ.,64, 985–1002.

    Google Scholar 

  • Redding, J. S. (1971) Abdominal compression in cardiopulmonary resuscitation.Anesth Analg.,50, 668–675.

    Google Scholar 

  • Rudikoff, M. T., Maughan, W. L., Efforn, M., Freund, P. andWeisfeldt, M. L. (1980) Mechanisms of blood flow during cardiopulmonary resuscitation.Circ.,61, 345–353.

    Google Scholar 

  • Taylor, G., Tucker, W. M., Greene, H. L., Rudikoff, M. T. andWeisefeldt, M. L. (1979) Importance of prolonged compression during cardiopulmonary resuscitation in man.N. Engl. J. Med.,296, 1515–1517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Haim, S.A., Shofti, R., Dinnar, U. et al. Pressures generated by ribcage and abdominal compressions during cardiopulmonary resuscitation. Med. Biol. Eng. Comput. 28, 43–49 (1990). https://doi.org/10.1007/BF02441676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441676

Keywords

Navigation