Evaluation of the attenuation coefficients in normal and pathological breast tissue

  • L. Landini
  • R. Sarnelli


The present paper reports on measurements of frequency-dependent attenuation in normal and pathological breast tissue. Measurements were performed by using pulsed transmitted ultrasound. Five groups of breast specimens including fatty tissue, fibrofatty parenchyma and fibrosis, malignant tumours with and without productive fibrosis (infiltrating ductal carcinoma scirrhous type and medullary carcinoma, respectively) have been studied. The results of the attenuation measurements indicate that the attenuation coefficient is lower for tissues with large predominance of cells (fatty tissue, medullary carcinoma) and increases with collagen fibre content (infiltrating ductal carcinoma scrirrhous type, fibrosis, fibrofatty). A comparative nonlinear (best fitting) and linear analysis of the attenuation curves shows that it does not matter whether one uses a linear or nonlinear equation to describe the attenuation curves.


Breast tissue Broadband pulsed ultrasound Frequency-dependent attenuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Busse, L. J., Miller, J. G., Yuhas, D. E., Mimbs, J. W., Weiss, A. N. andSobel, B. E. (1977) Phase cancellation effects: a source of attenuation artifact eliminated by a CdS acoustoelectric receiver. In:Ultrasound in Medicine, V3B.White, D. andBrown, R. E. (Eds.), Plenum, New York, 1519–1535.Google Scholar
  2. Calderon, C., Vilkomerson, D., Mezrich, R., Etzold, K. R., Kingsley, B. andHaskin, M. (1976) Differences in the attenuation of ultrasound by normal benign and malignant breast tissue.J. Clin. Ultrasound,4, 249–254.Google Scholar
  3. Chivers, R. C. (1981) Tissue characterization.Ultrasound in Med. & Biol.,7, 1–20.CrossRefGoogle Scholar
  4. Fink, M., Hattier, F., Berger, G. andPerrin, J. (1983)In vivo attenuation estimation in reflection mode. InUltrasound '82.Lerski, R. A. andMorley, P. (Eds.), Pergamon, Oxford, 117–122.Google Scholar
  5. Flax, S. W., Pele, N. J., Glover, G. H., Gutmann, F. D. andMcLachlan, M. (1983) Spectral characterization and attenuation measurements in ultrasound.Ultrasonic Imaging,5, 95–116.CrossRefGoogle Scholar
  6. Harper, A. P., Kelly-Fry, E. andNoe, J. S. (1981) Ultrasound breast imaging. The method of choice for examining the young patient.Ultrasound in Med. & Biol.,7, 231–237.CrossRefGoogle Scholar
  7. Harper, A. P., Jackson, V. P., Bies, J., Ransburg, R., Kelly-Fry, E. andNoe, J. S. (1982) A preliminary analysis of the ultrasound imaging characteristics of malignant breast masses as compared with x-ray mammographic appearances and the gross and microscopic pathology.,8, 365–368.CrossRefGoogle Scholar
  8. Hill, C. R. (1978) Ultrasonic attenuation and scattering by tissues. InHandbook of clinical ultrasound de Vlieger, M., Holmes, J. H., Kratochwil, A., Kazner, E., Kraus, R., Kossoff, G., Poujol, J. andStrandness, D. E. (Eds.), John Wiley & Sons, New York, 91–98.Google Scholar
  9. Kak, A. C. andDines, K. A. (1978) Signal processing of broadband pulsed ultrasound: measurement of soft biological tissues.IEEE Trans.,BME-25, 321–344.Google Scholar
  10. Kobayashi, T. (1979) Correlation of ultrasonic attenuation with connective tissue content in breast cancer. InCharacterization II.Linzer, M. (Ed.), National Ultrasonic Tissue Bureau of Standards, Spec. Publ. 525, 93–99.Google Scholar
  11. Kuc, R., Schwartz, M. andvon Micsky, L. (1976) Parametric estimation of the acoustic attenuation coefficient slope for soft tissue, IEEE Ultrasonic Symposium Proceedings, IEEE Cat. 76H 1120-55U, 44–47.Google Scholar
  12. Landini, L., Picano, E. andSarnelli, R. (1985) Attenuation measurements in atherosclerotic tissues: problems with phasecancellation artefacts.Med. & Biol. Eng. & Comput.,23, 220–223.Google Scholar
  13. Lele, P. P. andSenapati, N. (1977). The frequency spectra of energy backscattered and attenuated by normal and abnormal tissue. InRecent advances in ultrasound in biomedicine, vol. 1.White, D. N. (Ed.), Research Studies Press, Forest Grove, Oregon, USA, 55–85.Google Scholar
  14. Marcus, P. N. andCarstensen, E. L. (1975) Problems with absorption methods of inhomogeneous solids.J. Acoust. Soc. Am.,58, 1334–1335.CrossRefGoogle Scholar
  15. McDaniel, G. A. (1977) Ultrasonic attenuation measurements on exercise breast carcinoma at frequencies from 6 to 10 MHz. 1977 Ultrasonic Symposium Proceedings, IEEE Cat. No. 77CH12641SU, 234–236.Google Scholar
  16. Mimbs, J. W., Bauwens, D., Cohen, R. D., O'Donnell, M., Miller, J. andSobel, B. (1981) Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants.Circ. Res.,49, 88–96.Google Scholar
  17. Narayana, P. A. andOphir, J. (1983) On the validity of the linear approximation in the parametric measurement of attenuation in tissues.Ultrasound in Med. & Biol.,9, 357–361.CrossRefGoogle Scholar
  18. Nicholas, D. (1982) Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements.,8, 17–28.CrossRefGoogle Scholar
  19. Reid, J. M., Kak, A. C. andShung, K. K. (1979) Phase-cancellation effects with scattered waves (abstract). Proceedings of Fourth International Symposium on Ultrasonic Imaging and Tissue Characterization, US Department of Commerce, National Bureau of Standards, Gaithersburg, 84–85.Google Scholar
  20. Schwan, H. P. andCarstensen, E. L. (1952) Ultrasonic aids in diathermy experiments.Electronics,25, 216–220.Google Scholar

Copyright information

© IFMBE 1986

Authors and Affiliations

  • L. Landini
    • 1
    • 2
  • R. Sarnelli
    • 3
  1. 1.Centro “E. Piaggio”, Faculty of EngineeringUniversity of PisaPisaItaly
  2. 2.CNR Institute of Clinical PhysiologyPisaItaly
  3. 3.Institute of Pathological Anatomy and Histology, Medical SchoolUniversity of PisaPisaItaly

Personalised recommendations