Method for analysing multiple-breath bitrogen washouts

  • B. A. Sjöqvist
  • K. Sandberg
  • O. Hajalmarson
  • T. Olsson
Article

Abstract

A method of analysing multiple-breath nitrogen washouts is described and discussed. The method is objective and introduces no weighting into the results. The necessary raw data are obtained from a computer-assisted nitrogen washout test. During the analysis, objective parameters which characterise the alveolar ventilation in terms of nitrogen elimination pattern and gas-mixing efficiency are calculated, together with estimates of functional residual capacity (FRC), tidal volume, dead space, and effective part of the tidal volume. The elimination pattern is described through linear fitting of exponential models to the obtained washout course and is performed by using the z-transform. The dead space and the effective part of the tidal volume are estimated from a gas-mixing model. The applied estimation procedure difines a dead space which is larger than the corresponding single-breath dead space and has been designated ‘effective dead space’. The gas-mixing efficiency is described by two indices, one describing the efficiency within an idealised breath and the other the overall efficiency of the lungs. The calculation algorithms are fast and the results are easy to interpret, which makes the method suitable for clinical online applications. The method has been evaluated in a group of 24 healthy newborns at about 26 hours of age, but the application is not restricted to this category of patient.

Keywords

Computer analysis Dead space calculation Distribution of ventilation Gas mixing Linear estimation of exponentials Multiple breath nitrogen washout Nitrogen elimination pattern Ventilatory efficiency z-transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abajian, J. C., Shinozaki, T., Hanson, J. S. andTabakin, B. S. (1967) A computerized method for instantaneous and continous measurement of expired nitrogen. Aerospace Medical Research Laboratories. Tech. Report AMRL-TR-67-77, Wright-Patterson Air Force Base, Ohio.Google Scholar
  2. Beck, J. V. andArnold, K. J. (1977)Parameter estimation in engineering and science. John Wiley & Sons, New York.MATHGoogle Scholar
  3. Becklake, M. R. (1952) A new index of the intrapulmonary mixture of inspired air.Thorax,7, 111–116.Google Scholar
  4. Bouhuys, A. andLunding, G. (1959) Distribution of inspired gas in lungs.Physiol. Rev.,39, 731–750.Google Scholar
  5. Bouhuys, A. (1977)The physiology of breathing. Grune & Stratton, New York.Google Scholar
  6. Bowes, C., Cumming, G., Horsfield, K., Loughead, J. andPreston, S. B. (1982) Gas mixing in a model of the pulmonary acinus with asymmetrical alveolar ducts.J. Appl. Physiol.: Resp. Environ. Exercise Physiol.,52, 624–633.Google Scholar
  7. Breiman, L. (1973)Statistics: with a view toward applications. Houghton Mifflin, Boston.MATHGoogle Scholar
  8. Cumming, G. (1967) Gast mixing efficiency in the human lung.Respir. Physiol.,2, 213–224.CrossRefGoogle Scholar
  9. Cumming, G., Horsefield, K. andPreston, S. B. (1971) Diffusion equilibrium in the lungs examined by nodal analysis.—Ibid.,,12, 329–345.CrossRefGoogle Scholar
  10. Cumming, G. andSemple, S. J. (1973) Gas mixing in the lung. InDisorders of the respiratory system. Blackwell Scientific Publications, Oxford, Chap. 3.Google Scholar
  11. Engel, L. A. (1983) Gas mixing within the acinus of the lung.J. Appl. Physiol.: Respirat. Environ. Exercise Physiol.,54, 609–618.Google Scholar
  12. Fowler, W. S., Cornish, E. R. Jr. andKety, S. S. (1952) Lung function studies. VIII Analysis of alveolar ventilation by pulmonary nitrogen clearance curves.J. Clin. Invest.,31, 40–50.CrossRefGoogle Scholar
  13. Hanson, J. S. andShinozaki, T. (1970) Hybrid computer studies of ventilatory distribution and lung volume.Pediatrics,46, 900–914.Google Scholar
  14. Hashimoto, T., Young, A. C. andMartin, C. J. (1967) Compartmental analysis of the distribution of gas in the lungs.J. Appl. Physiol.,23, 203–209.Google Scholar
  15. Hjalmarson, O. (1974) Mechanics of breathing in newborn infants with pulmonary disease.Acta Paediat. Scand., Suppl. 247.Google Scholar
  16. Rossing, R. G. (1966) Evaluation of a computer solution of exponential decay or washout curves.J. Appl. Physiol.,21, 1907–1910.Google Scholar
  17. Sandberg, K., Sjöqvist, B. A., Hjalmarson, O. andOlsson, T. (1984) Analysis of alveolar ventilation in the newborn.Arch. Dis. in Childhood,59, 542–547.CrossRefGoogle Scholar
  18. Shinozaki, T., Abajian, J. C. Jr., Tabakin, B. S. andHanson, J. S. (1966) Theory and clinical application of a digital nitrogen washout computer.J. Appl. Physiol.,21, 202–208.Google Scholar
  19. Sjöqvist, B. A. (1984) On the analysis of alveolar ventilation: analysis, measurement, modeling, and clinical evaluation using data from newborn infants. Technical Report 140, School of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden (thesis).Google Scholar
  20. Sjöqvist, B. A., Sandberg, K., Hjallmarson, O. andOlsson, T. (1984) Calculation of lung volume in newborn infants by means of a computer-assisted nitrogen washout method.Pediat. Res.,18, 1160–1164.Google Scholar
  21. Strang, L. B. (1977)Neonatal respiration, physiological and clinical studies. Blackwell Scientific, Oxford.Google Scholar
  22. Tompkins, W. J. andWebster, J. G. (1981)Design of microcomputer-based medical instrumentation. Prentice-Hall, New Jersey.Google Scholar
  23. Webster, J. G. (1978)Medical instrumentation: application and design. Houghton Mifflin, Boston.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1986

Authors and Affiliations

  • B. A. Sjöqvist
    • 1
  • K. Sandberg
    • 2
  • O. Hajalmarson
    • 2
  • T. Olsson
    • 1
  1. 1.Research Laboratory of Medical ElectronicsChalmers University of TechnologyGöteborgSweden
  2. 2.Department of Pediatrics 1University of GöteborgGöteborgSweden

Personalised recommendations