Monitoring surface EMG spectral changes by the zero crossing rate

  • G. F. Inbar
  • O. Paiss
  • J. Allin
  • H. Kranz


A system is described which monitors spectral changes of the surface EMG. It is shown analytically that a relationship exists between the zero crossing rate (ZCR) and the mean, Fa, and median, Fm, frequencies of the surface EMG. Under the existing conditions of this relationship a system can be built which can estimate and monitor the Fa or Fm of the surface EMG from the measured ZCR. It is shown experimentally on the biceps, extensor digitorum and first dorsal interosseus muscles that an excellent agreement exists between the time averages of Fm and ZCR in normal muscles under a variety of muscle length tension and fatigue conditions. A simple portable microcomputer unit which performs the ZCR calculations and which can be used as a muscle fatigue monitor is described.


Surface EMG Zero crossing Spectral EMG Muscle fatigue monitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, G. C. andGottlieb, G. L. (1975) An analysis of the electromyogram by Fourier, simulation and experimental techniques.IEEE Trans.,BME-22, 225–229.Google Scholar
  2. Bendat, J. S. andPiersol, A. G. (1971)Random data analysis and measurement procedures, Wiley Interscience.Google Scholar
  3. Broman, H. andKadefors, R. (1979) A spectral moment analyzer for quantification of electromyograms. 4th Congress of Isek, Boston, USA.Google Scholar
  4. Chang, S.-H., Pihl, G. E. andEssigmann, M. W. (1951) Representations of speech sounds and some of their statistical properties.Proc. IRE, 147–153.Google Scholar
  5. Christakos, C. N. (1980) A population stochastic model of skeletal muscle and its use in the study of the frequency characteristics of muscle output activity with particular reference to tremor. Ph.D. Thesis, Chelsea College, University of London.Google Scholar
  6. Christakos, C. N. andLal, S. (1980) Lumped and population stochastic models of skeletal muscle: implications and predictions.Biol. Cybernetics,36, 73–85.MATHCrossRefGoogle Scholar
  7. Cobb, S., andForbes, A. (1923) Electromyographic studies of muscular fatigue in man.Am. J. Physiol.,65, 234–251.Google Scholar
  8. DeLuca, C. J. (1979a) Physiology and mathematics of myoelectric signals.IEEE Trans.,BME-26, 313–325.Google Scholar
  9. DeLuca, C. J. (1979b) Automated muscle fatigue monitor.Bull. Prosth. Res.,32, 235–237.Google Scholar
  10. Graupe, D. andCline, W. K. (1975) Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes.IEEE Trans.,SMC-5, 252–259.Google Scholar
  11. Hary, D., Belman, M. J., Propst, J. andLewis, S. (1982) Special communication: A statistical analysis of the spectral moments used in EMG tests of endurance.J. Appl. Physiol. Resp. Environ. Exc. Physiol.,53, 779–783.Google Scholar
  12. Inbar, G. F., Allin, J., Golos, E., Koehler, W. andKranz, H. (1981) EMG spectral shift with muscle length, tension, and fatigue. Proceedings of the IEEE MELECON Conference, May 1981, Israel.Google Scholar
  13. Inbar, G. F. andNoujaim, A. (1982, 1984) On surface EMG spectral characterization and its application to diagnostic classification. Proceedings of the 5th ISEK conference, Ljubljana, 1982,IEEE Trans.,BME-31, 597–604.Google Scholar
  14. Inbar, G. F., Allin, J. andKranz, H. (1983) Surface EMG spectral changes with muscle length. EE Pub. No. 433 (available from the Department of Electrical Engineering, Technion).Google Scholar
  15. Kadefors, R., Kaiser, E. andPetersen, I. (1968) Dynamic spectrum analysis of myo-potentials with special reference to muscle fatigue.Electromyography,8, 39–74.Google Scholar
  16. Kedem, B. andSlud, E. (1982) Time series discrimination by means of higher order crossings'.Ann. of Statistics,10, 786–794.MATHMathSciNetGoogle Scholar
  17. Kedem, B. (1982) Some graphical considerations in time series analysis.IEEE Trans.,PAMI-4, 493–499.MATHGoogle Scholar
  18. Kranz, H., Chan, H., Caddy, D. J. andWilliams A. W. (1981) Factors contributing to the decrease in the frequency content of the electromyogram during muscle contraction. New approaches to nerve and muscle disorders. Proceedings of the Second Symposium of the Foundation for Life Sciences, Sydney, 3rd–6th February 1981, 104–113.Google Scholar
  19. Kranz, H., Williams, A. M., Cassell, J. F., Caddy, D. J. andSilberstein, R. B. (1983) Factors determining the frequency content of the electromyogram.J. Appl. Physiol. Resp. Exerc. Environ. Physiol.,55, 392–399.Google Scholar
  20. Lago, P. andJones, N. B. (1977) Effect of motor-unit firing statistics on EMG spectra.Med. Biol. Eng. Comput.,15, 648–655.Google Scholar
  21. Lindstrom, L., Magnusson, R. andPetersen, I. (1970) Muscle fagigue and action potential conduction velocity changes studied with the aid of frequency analysis of EMG signals.Electromyography,4, 341–356.Google Scholar
  22. Lindstrom, L., Kadefors, R. andPetersen, I. (1977) An electromyographic index for localized muscle fatigue.J. Appl. Physiol.,43, 750–754.Google Scholar
  23. Lindstrom, L. H. andMagnusson, R. I. (1977) Interpretation of myoelectric power spectra: A model and its applications,Proc. IEEE,65, 653–662.CrossRefGoogle Scholar
  24. Marsden, C. D., Meadows, J. C. andMerton, P. A. (1971) Isolated single motor units in human muscle and their rate of discharge during maximal voluntary effort.J. Physiol.,217, 12P-13P.Google Scholar
  25. Milner-Brown, H. S., Stein, R. D. andLee, R. G. (1975) Synchronization of human motor units: possible rates of exercise and supraspinal reflexes.Electroenceph. Clin. Neurophysiol.,38, 245–254.CrossRefGoogle Scholar
  26. Mortimer, J. T., Magnusson, R. andPetersen, I. (1970) Conduction velocity in ischemic muslce: Effort on EMG frequency spectrum,Am. J. Physiol.,219, 324–329.Google Scholar
  27. Rice, S. O. (1945) Mathematical analysis of random noise,Bell Syst. Tech. J.,24, 46–156.MATHMathSciNetGoogle Scholar
  28. Schweitzer, T. W., Fitzgerald, J. A., Bowden, J. A. andLynne-Davis, P. (1979) Spectral analysis of human inspiratory diaphragmatic electromyograms.J. Appl. Physiol: Respirat. Environ. Exercise Physiol.,46, pp. 152–165.Google Scholar
  29. Stulen, F. B. (1980) A technique to monitor localized muscle fatigue using frequency domain analysis of the EMG signal. Ph.D. Thesis, MIT.Google Scholar
  30. Stulen, F. B. andDeLuca, C. J. (1981) Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity.IEEE Trans.,BME-28, 515–523.Google Scholar
  31. Stulen, F. B. andDeLuca, C. J. (1982) Muscle fatigue monitor: A non-invasive device for observing localized muscular fatigue'.IEEE Trans.,BME-29, 760–768.Google Scholar
  32. Zetterberg, L. H. (1977) Means of methods for processing of physiological signals with emphasis on EEG analysis. InAdvances in biological and medical physics, vol. 16, New York Academic Press.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1986

Authors and Affiliations

  • G. F. Inbar
    • 1
  • O. Paiss
    • 1
  • J. Allin
    • 1
  • H. Kranz
    • 1
  1. 1.Department of Electrical Engineering and the Julius Silver Institute of Biomedical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations