Skip to main content
Log in

Modelling myoelectric interference patterns during movement

  • Review
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Interpretation of myoelectric interference patterns during movement relies on suitably formulated models. In the review, various modelling approaches are described and discussed. The importance of incorporating the time lag between mechanical and electrical activities in models of myoelectric activity is underlined. It is suggested that a portion of electrical activity is not related to force production but represents muscle efforts at damping oscillations in the surrounding soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel, R. W. (1974) Electromyography during voluntary movement: the two burst pattern.Electroenceph. Clin Neurophysiol.,36, 493–498.

    Article  Google Scholar 

  • Basmajian, J. V., Clifford, H. C., McLeod, W. D. andNunnally, H. H. (1975)Computers in electromyography. Butterworth, London.

    Google Scholar 

  • Basmajian, J. V. (1978)Muscle alive, 4th edn. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Bigland, B. andLippold, O. C. J. (1954) The relation between force, velocity and integrated electrical activity in human muscles.J. Physiol. Lond.,123, 214–224.

    Google Scholar 

  • Box, G. E. P. andJenkins, G. M. (1976)Times series analysis: forecasting and control. Holden Day, San Francisco.

    Google Scholar 

  • Box, G. E. P. andTiao, G. C. (1975) Intervention analysis with applications to economic and environmental problems.J. Am. Statist. Ass.,70, 70–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Brody, G., Balasubramanian, R. andScott, R. N. (1974) A model for myoelectric signal generation.Med. & Biol. Eng.,12, 29–41.

    Google Scholar 

  • Chaffin, D. B., Lee, M. andFreivalds, A. (1980) Muscle strength assessment from EMG analysis.Med. Sci. Sports Exercise,12, 205–211.

    Google Scholar 

  • Chapman, A. E. andCalvert, T. W. (1979) Estimation of active state from EMG recordings in human muscular contraction.Electromyograph. Clin. Neurophysiol.,19, 199–222.

    Google Scholar 

  • Coatrieux, J. L., Rouvrais, B., de Bass, R. andToulouse, P. (1981) Les développements récents dans la quantification du signal électromyographique de contraction volontaire. Partie II: Reconnaissance, quantification et modélisation.Rev. Europ. Technol. Bioméd.,5, 388–394.

    Google Scholar 

  • Coggshall, C. J. andBekey, G. A. (1970) A stochastic model of skeletal muscle based on motor unit properties.Math. Bioscience,7, 405–419.

    Article  Google Scholar 

  • De Luca, C. J. andForrest, W. J. (1973) Derivation of some parameters of myoelectric signals recorded during constant force isometric contractions in man.Kyhernetik,12, 160–168.

    Article  Google Scholar 

  • De Luca, C. J. (1975) A model for a motor unit train recorded during constant force isometric contractions.Biol. Cybernet.,19, 159–167.

    Article  MATH  Google Scholar 

  • De Luca, C. J. andvan Dyke, E. J. (1975) Derivation of some parameters of myoelectric signals recorded during sustained constant force isometric contractions.Biophys. J.,15, 1167–1180.

    Google Scholar 

  • De Luca, C. J. (1979) Physiology and mathematics of myoelectric signals.IEEE Trans.,BME-26, 313–325, [also Chap. III inBasmajian (1978)].

    Google Scholar 

  • de Vries, H. A. (1968) Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves.Am. J. Physical Med.,47, 125–135.

    Google Scholar 

  • El'ner, A. M. (1968) Prediction of results of action in the control of complex biochemical systems. InTechnical and biological problems of control—a cybernetic view.Iberall, A. S. andReswick, J. B. (Eds.), IFAC Conference, Yerevan, Armenia, Instrument Society of America, Pittsburgh, 1970, 482–485.

    Google Scholar 

  • Engberg, I. andLundberg, A. (1969) An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion.Acta Physiol. Scand.,75, 614–630.

    Google Scholar 

  • Evans, H. B., Pan, Z., Parker, P. A. andScott, R. N. (1984) Signal processing for proportional myoelectric control.IEEE Trans.,BME-31, 207–211.

    Google Scholar 

  • Fleicher, S. M., andShwedyk, E. (1979). Sequential multistate EMG signal processor.—Ibid.,BME-25, 549–556.

    Google Scholar 

  • Ghez, C. andMartin, J. H.. (1982) The control of rapid limb movements in the cat III. Agonist-antagonist coupling.Exp. Brain Res. (Berlin)45, 115–125.

    Article  Google Scholar 

  • Graupe, D. andCline, W. K. (1975) Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes.IEEE Trans.,SMC-5, 252–259.

    Google Scholar 

  • Grillner, S. (1972) The role of muscle stiffness in meeting the changing postural and locomotor requirements for force developments by the ankle extensors.Acta Physiol. Scand.,86, 92–108.

    Google Scholar 

  • Hamming, R. W. (1977)Digital filters. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Heechen, R. E. (1974) The pattern of muscle activity and motion during accelerated extension of the forearm. Ph.D. dissertation, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle.Proc. R. Soc. Ser. B,76, 136–195.

    Google Scholar 

  • Hill, A. V. (1952) The mechanics of active muscle.—Ibid.,141, 104–117.

    Article  Google Scholar 

  • Hof, A. L. andvan den Berg, J. W. (1977) Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque.J. Biomech.,10, 529–539.

    Article  Google Scholar 

  • Hof, A. L. andvan den Berg, J. W. (1981a) EMG to force processing I: An electrical analogue of the Hill muscle model. —Ibid.,14, 747–758.

    Article  Google Scholar 

  • Hof, A. L. andvan den Berg, J. W. (1981b) EMG to force processing III: estimation of model parameters for the human triceps surae muscle and assessment of the accuracy by means of a torque plate.—Ibid.,14, 771–785.

    Article  Google Scholar 

  • Hogan, N. andMann, R. (1980) Myoelectric signal processing: optimal estimation applied to electromyography—Part 1: Derivation of the optimal myoprocessor.IEEE Trans.,BME-27, 382–385.

    Google Scholar 

  • Inman, V. T., Ralston, H. J., Saunders, J. B. de C. M., Feinstein, B. andWright, E. W. (1952) Relation of human electromyogram to muscular tension.Electroenceph. Clin. Neurophysiol.,4, 187–194.

    Article  Google Scholar 

  • Isakson, A., Wenneberg, A. andZetterberg, L. H. (1981) Computer analysis of EEG signals with parametric models.Proc. IEEE,69, 451–461.

    Google Scholar 

  • Johnson, J. C. (1978) Comparison of analysis techniques for electromyographic data.Aviation, Space Environ. Medic.,49, 14–18.

    Google Scholar 

  • Kadefors, R., Kaiser, E. andPetersen, I. (1968) Dynamic spectrum analysis of myosignals with special reference to fatigue.Electromyography,8, 39–74.

    Google Scholar 

  • Kaiser, E. andPeterson, I. (1963) Frequency analysis of muscle action potentials during tetanic contraction.—Ibid.,3, 5–17.

    Google Scholar 

  • Kayshap, R. L. (1978) Optimal feature selection and decision rules in classification problems with time series.IEEE Trans.,IT-24, 281–288.

    Google Scholar 

  • Kollberg, S., Petersén, I. andStener, I. (1962) Preliminary results of an electromyographic study of ejaculation.Acta Chir. Scand.,123, 478–483.

    Google Scholar 

  • Komi, P. V. (1973) Relationship between muscle tension, EMG and velocity of contraction under concentric and eccentric work. InNew developments in electromyography and clinical neurophysiology, vol. 1.Desmedt, J. E. (Ed.), Karger, Basel, 596–606.

    Google Scholar 

  • Komi, P. V. andBuskirk, E. R. (1972) Effects of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle.Ergonomics,15, 417–434.

    Google Scholar 

  • Krämer, H., Brauer, D., andKücher, G. (1972) Über die Zuverlässigkeit elektromyographisher Messungen mittees Oberflachenenelektroden.Acta Biologica et Medica Germanica,9, 383–388.

    Google Scholar 

  • Kuroda, E., Klissouras, V. andMilsum, J. H. (1970) Electrical and metabolical activities and fatigue in human isometric contraction.J. Appl. Physiol.,29, 358–367.

    Google Scholar 

  • le Fever, R. S. andde Luca, C. J. (1982) A procedure for decomposing the myoelectric signals into its constitutent action potentials. Part I: Technique, theory, and implementation.IEEE Trans.,BME-29, 149, 157.

    Google Scholar 

  • Libkind, H. S. (1968) Modelling of interference of biological activity II.Biophys.,13, 811–821.

    Google Scholar 

  • Libkind, H. S. (1969) Modelling of interference of biological activity III.—Ibid.,14, 395–398.

    Google Scholar 

  • Lindström, L. (1974) Contribution to the interpretation of myoelectric power spectra. Thesis, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Lindström, L. H. andMagnusson, R. J. (1977) Interpretation of myoelectric power spectra: a model and its applications.Proc. IEEE,65, 653–662.

    Google Scholar 

  • Liu, L. M. (1979) User's manual for BMQ2T (TSPACK) BMDP Technical Report 57. Department of Biomathematics, University of California, Los Angeles.

    Google Scholar 

  • Liu, L. M. andHanssens, D. M. (1982) Identification of multiple input transfer function models.Comm. Statist. Theor. Meth.,11, 297–314.

    Google Scholar 

  • Liu, L. M., Hudak, G. B., Box, G. E. P., Muller, M. E. andTiao, G. C. (1983)The SCA system for univariate-multivariate time series and general statistical analysis. Scientific Computing Associates, Dekalb, Illinois.

    Google Scholar 

  • Lyman, J., Freedy, A. andSolomonow, M. (1974) Studies toward a practical computer aided system.Bull. Prosth. Res.,10–22, 213–225.

    Google Scholar 

  • Madni, A. M. (1978) Adaptive classification of myoelectric signal patterns for multifunctional prostheses control. Ph.D. dissertation, University of California, Los Angeles.

    Google Scholar 

  • Maton, B. (1973) Influence du temps d'intégration sur la relation entre l'EMG de surface intégré et la force au cours de la contraction isométrique isotonique.Electromyograph. Clin. Neurophysiol.,13, 307–318.

    Google Scholar 

  • Maton, B. (1977) Fréquence et recruitment des unités motrices du muscle biceps brachial au cours du travail statique chez l'homme normal.J. de Physiologie (Paris),73, 177–199.

    Google Scholar 

  • McDowall, D., McCleary, R., Meidinger, E. E., andHay, R. A. Jr. (1980)Interrupted time series analysis. Sage University on Quantitative Applications in the Social Sciences, series no. 07-021, Sage Publications, Beverly Hills and London.

    Google Scholar 

  • Milner-Brown, H. S., Stein, R. B. andYemm, B. (1972) Mechanisms for increasing force during voluntary contractions.J. Physiol. (London),226, 18p-19p.

    Google Scholar 

  • Milner-Brown, H. S., Stein, R. B. andYemm, B. (1973a) The orderly recruitment of human motor units during voluntary isometric contractions.—Ibid.,,230, 359–370.

    Google Scholar 

  • Milner-Brown, H. S., Stein, R. B. andYemm, B. (1973b) Changes in firing rate of human motor units during linearly changing voluntary contractions.—Ibid.,,230, 371–390.

    Google Scholar 

  • Nelson, C. R. (1973)Applied time series analysis for managerial forecasting. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Norman, R. W. andKomi, P. V. (1979) Electromechanical delay in skeletal muscle under normal movement conditions.Acta Physiol. Scand.,106, 241–248.

    Google Scholar 

  • Papoulis, A. (1965)Probability random variables, and stochastic processes. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Parker, P. A., Stuller, J. A. andScott, R. N. (1977) Signal processing for the multistate myoelectric channel.Proc. IEEE,65, 662–675.

    Article  Google Scholar 

  • Patla, A. E., Hudgins, B. S., Parker, P. A. andScott, R. N. (1982) Myoelectric signal as a quantitative measure of muscle mechanical output.Med. & Biol. Eng. & Comput.,20, 319–328.

    Article  Google Scholar 

  • Person, R. S. andLibkind, M. S. (1967) Modeling of interference bio-electric activity,Biophys.,12, 145–153.

    Google Scholar 

  • Person, R. S. andLibkind, M. S. (1970) Simulation of electromyograms showing interference patterns.Electroenceph. Clin. Neurophysiol.,28, 625–632.

    Article  Google Scholar 

  • Person, R. S. andKudina, L. P. (1972) Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle.—Ibid.,,32, 471–483.

    Article  Google Scholar 

  • Ralston, H. J., Todd, F. N. andInman, V. T. (1976) Comparison of electrical activity and duration of tension in the human rectus femoris muscle.Electromyograph. Clin. Neurophysiol.,16, 277–286.

    Google Scholar 

  • Richfield, E. K., Bernard, A. C. andJames, W. A. (1981) Review of quantitative and automated needle electromyographic analysis.IEEE Trans.,BME-28, 506–514.

    Google Scholar 

  • Scott, R. N., Parker, P. A. andDunfield, V. A. (1974) Myoelectric control. InIEE Medical Electronics Monographs 7–12.Hill, D. W. andWatson, B. W. (Eds.), Peter Peregrinus, Stevenage, England, 141–169.

    Google Scholar 

  • Sherif, M. H. (1980) A stochastic model of myoelectric signals for movement pattern recognition in upper limb prosthesis. Ph.D. dissertation, University of California, Los Angeles.

    Google Scholar 

  • Sherif, M. H., Gregor, R. J. andLyman, J. (1980a) Statistical modeling of myoelectric signals. Proc. Joint Automatic Control Conf., Session TA10, vol. 1.

  • Sherif, M. H., Gregor, R. J. andLyman, J. (1980b) Dynamic changes in the power spectral density of myoelectric signals during movement. Proc. 4th Ann. Conf. Amer. Soc. Biomech., Burlington, Vermont.

  • Sherif, M. H., Gregor, R. J. andLyman, J. (1981) Effects of load on myoelectric signals: the ARIMA representation.IEEE Trans.,BME-28, 411–416.

    Google Scholar 

  • Sherif, M. H., Gregor, R. J., Liu, L. M., Roy, R. R. andHager, C. L. (1983a) Correlation of myoelectric activity and muscle force during selected cat treadmill locomotion.J. Biomech.,16, 691–701.

    Article  Google Scholar 

  • Sherif, M. H., Gregor, R. J., Liu, L. M. Roy, R. R. andHager, C. L. (1983b) The two-burst pattern revisited. Proc. 6th Ann. Conf. Am. Soc. Biomech., Seattle.

  • Sherif, M. H., Gregor, R. J. andLyman, J. (1984) Phasic relations in 90o abduction-adduction of the arm: the ARIMA representation.J. Biomech.,17, 215–224.

    Article  Google Scholar 

  • Sherif, M. H. andLiu, L. M. (1984) Recursive estimation for transfer function models.Int. J. Control,40, 499–518.

    MATH  MathSciNet  Google Scholar 

  • Shwedyk, E., Balasubramanian, R. andScott, R. N. (1977) A nonstationary model for the electromyogram.IEEE Trans.,BME-24, 417–442.

    Google Scholar 

  • Smith, J. L., Edgerton, V. R., Betts, B. andCollatos, T. C. (1977) EMG of slow and fast angle extensors at cat during posture, locomotion, and jumping.J. Neurophysiol.,40, 503–513.

    Google Scholar 

  • Stulen, F. B. andde Luca, C. J. (1981) Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity.IEEE Trans.,BME-28, 515–523.

    Google Scholar 

  • Vittsalo, J. H. andKomi, P. V. (1975) Signal characteristics of EMG with special reference to reproducibility of measurements.Acta Physiol. Scand.,93, 531–539.

    Article  Google Scholar 

  • Vredenbregt, J. andRau, G. (1973) Surface electromyography in relation to force, muscle length and endurance. InNew developments in electromyography and clinical neurophysiology, vol. 1.Desmedt, J. E. (Ed.), Karger, Basel, 607–622.

    Google Scholar 

  • Walmsley, B., Hodgson, J. A. andBurke, R. E. (1978) Forces produced by medial gastrocnemius and moving cats.J. Neurophysiol.,41, 1203–1215.

    Google Scholar 

  • Whiting, W. C., Gregor, R. J., Roy, R. R. andEdgerton, V. R. (1984) A technique for estimating mechanical work of individual muscles in the cat during treatmill locomotion.J. Biomech.,17, 685–694.

    Article  Google Scholar 

  • Zajac, F. E. andLevine, W. S. (1979) Novel experimental and theoretical approaches to study the neural control locomotion and jumping. InPosture and movement.Tallot, R. E. andHumphrey, D. R. (Eds.), Raven Press, New York, 259–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherif, M.H., Gregor, R.J. Modelling myoelectric interference patterns during movement. Med. Biol. Eng. Comput. 24, 2–9 (1986). https://doi.org/10.1007/BF02441599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441599

Keywords

Navigation