Skip to main content
Log in

Comparison of methods for adaptive sampling of cardiac electrograms and electrocardiograms

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Digital sampling of cardiac electrograms and electrocardiograms is usually performed by sampling at uniform intervals with rates high enough to record the fastest signal components. Numerous redundant samples are recorded during slower deflections and baseline intervals, particularly for direct cardiac measurements that include fast Purkinje deflections. In this report, five adaptive sampling methods (voltage triggered, two-point projection, second differences, the fan and CORTES) are compared with uniform sampling for cardiac waveforms. For the electrogram, the results indicated that adaptive sampling based on the fan method might be used effectively to limit average data rates to moderate values during original data acquisition

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abenstein, J. P. (1978) Algorithms for real-time ambulatory ECG monitoring.Biomed. Sci. Instrum.,14, 73–77.

    Google Scholar 

  • Abenstein, J. P. andTompkins, W. J. (1982) A new data-reduction algorithm for real-time ECG analysis.IEEE Trans. BME-29, 43–48.

    Google Scholar 

  • Andrews, C. A., Davies, J. M. andSchwarz, G. R. (1967) Adaptive data compression.Proc. IEEE,55, 267–277.

    Google Scholar 

  • Barr, R. C. andSpach, M. S. (1977) Sampling rates required for digital recording of intracellular and extracellular cardiac potentials.Circulation,55, 40–48.

    Google Scholar 

  • Berson, A. S., Wojick, J. M. andPipberger, H. V. (1977) Precision requirements for electrocardiographic measurements computed automatically.IEEE Trans.,BME-24, 382–385.

    Google Scholar 

  • Blanchard, S. M., Barr, R. C. andSpach, M. S. (1982) A voltagetriggered system for adaptive sampling in body surface mapping.,BME-29, 726–730.

    Google Scholar 

  • Blanchard, S. M. andBarr, R. C. (1982) Zero, first, and second order adaptive sampling of ECGs.Proc. 35th ACEMB, Philadelphia, PA.

  • Borjesson, P. O., Einarsson, G. andPahlm, O. (1980) Comments on ‘Compression of the ECG by prediction or interpolation and entropy encoding’.IEEE Trans. BME-27, 674–675.

    Google Scholar 

  • Cox, J. R., Nolle, F. M., Fozzard, H. A. andOliver, G. C. (1968) AZTEC, a preprocessing program for real-time ECG rhythm analysis.,BME-15, 128–129.

    Google Scholar 

  • Cox, J. R., Fozzard, H. A., Nolle, F. M. andOliver, G. C. (1974) Some data transformations useful in electrocardiography. InComputers and biomedical research.Stacy, R. W. andWaxman, B. D., (Eds.), Chap. 3, 182–206.

  • Dower, G. E. (1974) Progress in electrocardiology, Part 2: data display, compression and transmission.J. Biomed. Eng.,9, 296–297.

    Google Scholar 

  • Evans, A. K. andLux, R. L. (1978) Reduction of temporal redundancy in ECG body surface maps.Proc. 31st ACEMB,31, 168.

    Google Scholar 

  • Gardenhire, L. W. (1964) Redundancy reduction, the key to adaptive telemetry. Proceedings of the 1964 National Telemetering Conference, Los Angeles, CA, Section 1–5, pp. 1–16.

  • Gardenhire, L. W. (1965) Data redundancy reduction for biomedical telemetry. InBiomedical telemetry.Caceres, C. A. (Ed.), Academic Press, New York, Chap. 11, 255–298.

    Google Scholar 

  • Ishijima, M., Shin, S.-B., Hostetter, G. andSklansky, J. (1983) Scan-along polygonal approximation for data compression of electrocardiograms.IEEE Trans.,BME-30, 723–729.

    Google Scholar 

  • Kinias, P. andFozzard, H. A. (1979) Rapid ECG analysis and arrhythmia detection. InComputer techniques in cardiology.Cady, L. D. Jr. (Ed.), Biomed. Eng. & Instrumentation Series, Vol. 4, Marcel Dekker, New York, 97–122.

    Google Scholar 

  • Kortman, C. M. (1967) Redundancy reduction—a practical method of data compression.Proc. IEEE,55, 253–263.

    Google Scholar 

  • Langner, P. H. Jr., Geselowitz, D. B. andBriller, S. A. (1973) Wide band recording of the electrocardiogram and coronary heart disease.Am. Heart. J.,86, 308–317.

    Article  Google Scholar 

  • Marvell, C. J. andKirk, D. L. (1980a) Use of a microprocessor to simulate precise electrocardiograms.J. Biomed. Eng.,2, 61–62.

    Google Scholar 

  • Marvell, C. J. andKirk, D. L. (1980b) A simple software routine for the reproducible processing of the electrocardiogram.,2, 216–220.

    Google Scholar 

  • Mueller, W. C. (1978) Arrhythmia detection program for an ambulatory ECG monitor.Biomed. Sci. Instrum.,14, 81–85.

    Google Scholar 

  • Pahlm, O., Borjesson, P. D. andWerner, O. (1979) Compact digital storage of ECGs.Comput. Programs in Biomedicine,9, 293–300.

    Article  Google Scholar 

  • Ruttimann, U. E., Berson, A. E. andPipberger, H. V. (1976) ECG data compression by linear prediction.Computers in Cardiology, IEEE Computer Society, 313–315.

  • Ruttimann, U. E. andPipberger, H. V. (1979) Compression of the ECG by prediction or interpolation and entropy encoding.IEEE Trans.,BME-26, 613–623.

    Google Scholar 

  • Shakin, V. V., Breuer, P., Szekely, E., Kobzos, L., Wolf, T. andNemeth, J. (1977) Adaptive compression and filtering for vectorial electrocardiogams.Adv. Card.,19, 169–170.

    Google Scholar 

  • Shakin, V. V., Csapodi, C., Preda, I., Kenedi, P. andBreuer, P. (1978) Adaptive data reduction in body surface mapping.,21, 40–43.

    Google Scholar 

  • Shridhar, M. andStevens, M. F. (1979) An analysis of ECG data, for data compression.Int. J. Bio-Med. Comput.,10, 113–128.

    Article  Google Scholar 

  • Spach, M. S., Barr, R. C., Johnson, E. A. andKootsey, J. M. (1973) Cardiac extracellular potentials. Analysis of complex wave forms about the Purkinje network in dogs.Circ. Res.,33, 465–473.

    Google Scholar 

  • Stewart, D., Dower, G. E. andSuranyi, O. (1973) An ECG compression code.J. Electrocardiology,6, 175–176.

    Google Scholar 

  • Tompkins, W. J. (1978) A portable microcomputer based system for biomedical applications.Biomed. Sci. Instrum.,14, 61–66.

    Google Scholar 

  • Tompkins, W. J. andAbenstein, J. P. (1979) CORTES—a data reduction algorithm for electrocardiography.Proc. 14th AAMI, Las Vegas, Nevada, 277.

  • Tompkins, W. J. andWebster, J. G. (Eds.) (1981)Design of microcomputer-based medical instrumentation. Prentice-Hall, Englewood Cliffs, New Jersey, 433–461.

    Google Scholar 

  • Webster, J. G. (1978) An intelligent monitor for ambulatory ECGs.Biomed. Sci. Instrum.,14, 55–60.

    Google Scholar 

  • Wolf, H. K., Sherwood, J. D. andKanon, D. J. (1976) The effect of signal noise on the performance of several ECG programs. InComputers in Cardiology, IEEE Computer Society, 303–305.

  • Womble, M. E., Halliday, J. S., Mitter, S. K., Lancaster, M. C. andTriebwasser, J. H. (1977) Data compression for storing and transmitting ECGs/VCGs.Proc. IEEE,65, 702–706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, S.M., Barr, R.C. Comparison of methods for adaptive sampling of cardiac electrograms and electrocardiograms. Med. Biol. Eng. Comput. 23, 377–386 (1985). https://doi.org/10.1007/BF02441592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441592

Keywords

Navigation