Medical and Biological Engineering and Computing

, Volume 19, Issue 6, pp 701–706 | Cite as

Evaluation of adsorbents for the removal of metabolic wastes from blood

  • D. Deepak


The adsorption properties of various adsorbents for metabolic wastes, such as urea, uric acid, creatinine and ammonium ions have been studied. Oxycellulose prepared by the periodic acid method having more aldehyde, adsorbs more than three times the amount of urea than the activated carbon supplied by Sarabhai Merck. Synthetic resins do not adsorb urea, uric acid and creatinine, but adsorb a significant amount of ammonium ions.


Activated carbon Adsorption Metabolic wastes Oxycellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfrey, A. C. andSmythe, W. R. (1975) Trace element abnormalities in chronic uremia.Proc. NIAMD; artificial kidney contractors conf., N.I.H., No. 8, p. 29.Google Scholar
  2. Bergstrom, J., Furst, P. andGordon, A. (1975) A study of uremic toxicology,Proc. NIAMD; artificial kidney contractors conf., N.I.H., No. 8, p. 44.Google Scholar
  3. Chang, T. M. S., Migohelsen, M., Coffey, J. F. andStark, A. (1974) Serum middle molecule levels in urenia during long term intermittent haemoperfusion with the AcAC (coated charcoal) microcapsule artificial kidney.Trans. Am. Soc. Artif. Intern. Organs,20, 364–371.Google Scholar
  4. Chang, T. M. S., Chirito, E., Barre, B., Cole, G. andHewish, M. (1975) Clinical performance characteristics of a new combined system for simultaneous haemodialysis, ultrafiltration in series,Trans. Am. Soc. Artif. Intern. Organs,21, 502–508.Google Scholar
  5. Davidson, G. F. (1941) Properties of periodic acid and metaiodate oxycellulose,J. Text. Inst.,32, T109-T130.CrossRefGoogle Scholar
  6. Deepak, D. (1977) Studies on the purification of blood by adsorption, Ph.D. Thesis, Bioengineering Division, I.I.T., Madras, India.Google Scholar
  7. Denti, E., Luboz, M. P., Tessore, V. A., Castino, F. andGaglia, P. (1975) Adsorbents in haemoperfusion.Kidney Int.,7, S401-S405.Google Scholar
  8. Doree, C. (1950)The methods of cellulose chemistry, Chapman and Hall Ltd., London.Google Scholar
  9. Dunea, G. andKolff, W. J. (1965) Clinical experience with the Yatzidis charcoal artificial kidney.Trans. Am. Soc. Artif. Intern. Organs,11, 178–182.Google Scholar
  10. Giordano, C., Esposito, R. andPluvio, M. (1975) Oxycellulose and ammonia-treated starches as insoluble polyaldehydes in uremia.Kidney Int.,7, S380-S382.Google Scholar
  11. Giordano, C. andEsposito, R. (1976) Study on oxystarch and uremia.Proc. NIAMD, artificial kidney contractors conf., N.I.H., No. 9, p. 82.Google Scholar
  12. Gordon, A., Better, O. S., Greenbaum, M. A., Morantz, L. B., Gral, T. andMaxwell, M. H. (1971) Clinical maintenance hemodialysis with a sorbent-based low volume dialysate regeneration system.Trans. Am. Soc. Artif. Intern. Organs,17, 253.Google Scholar
  13. Greenbaum, M. A. andGordon, A. (1972) A regenerative dialysis supply system.Dialysis & Transplant,1, 18.Google Scholar
  14. Hassler, J. W. (1963)Activated carbon, Chemical Publishing Co. Inc., New York.Google Scholar
  15. Kirk andOthmer (1970)Encyclopedia of chemical technology, 2nd. Ed., Vol. 21, pp. 38–39, Interscience Publishers, N.Y.Google Scholar
  16. Machida, S. andInano, M. (1955) Oxidation of cellulose II celluronic acid prepared by a simple method.Bull. Chem. Soc. Japan,28, 343.CrossRefGoogle Scholar
  17. McBurney, L. F. (1954)Oxidative degradation of cellulose in cellulose and cellulose derivatives, Part I. Ott, E., Spurlin, H. M. and Grafflin, M. W., Eds. Interscience publishers, N.Y., 140.Google Scholar
  18. Mehall, J. R., Koenig, J. L., Lindan, O. andSparks, R. E. (1969) Screening study of adsorbents for urea removal from artificial kidney dializing fluid.J. Biomed, Mater. Res.,3, 529–543.CrossRefGoogle Scholar
  19. Ruch, T. C. andPatton, M. D. (1965)Physiology and biophysics, 19th Edition, W. D. Saunders, Philadelphia.Google Scholar
  20. Shettigar, U. R., Deepak, D. andGhista, D. N. (1977) A model of the patient dialysis treatment to study the dynamics of metabolic waste concentrations and c.s.f. pressure, and hence to provide guideline for treatment.Med. Bio. Eng. & Comput.,15, 124–133.Google Scholar
  21. Sparks, R. E., Blaney, T. L. andLindan, O. (1966) Adsorption of nitrogeneous waste metabolites from artificial kidney dialysis fluid.Chem. Eng. Prog. Symp. Series,62, 2–10.Google Scholar
  22. Sparks, R. E., Gupta, V. S. andMason, N. S. (1976) Adsorption of barbiturates from buffers, blood and intestinal fluids. Paper presented at Seminar on Artificial organs, Strathclyde University, Glasgow, Scotland, Aug. 18–20.Google Scholar
  23. Varley, Y. H. (1975)Practical clinical biochemistry, 4th Ed., Arnold-Heinemann Publishers, (India) Pvt. Ltd.Google Scholar
  24. Wybenga, D. R., Giorgio, J. D. andPileggi, V. J. (1971) Manual and automated method for urea nitrogen measurements in whole blood.Clin. Chem.,17 (9), 891–895.Google Scholar
  25. Yackel, E. C. andKenyon, W. (1942) The oxidation of cellulose by nitrogen oxide.J. Am. Chem. Soc.,64, 121–127.CrossRefGoogle Scholar
  26. Yatzidis, H. (1964) A convenient hemoperfusion microapparatus over charcoal for the treatment of endegenous and exogeneous intoxication. Its use as effective artificial kidney.Proc. Eur. Dialysis Transplant Assoc.,1, 83–87.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1981

Authors and Affiliations

  • D. Deepak
    • 1
  1. 1.Department of Chemical EngineeringUniversity of RoorkeeRoorkeeIndia

Personalised recommendations