Skip to main content

Advertisement

Log in

Passive accumulation of magnesium, sodium, and potassium by chick calvaria

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Four-day-old chick calvaria were used to determine the passive concentrations of magnesium, sodium, and potassium in metabolically poisoned bone. When incubated in buffers containing the blood levels of sodium and magnesium, these calvaria contained sodium and magnesium at the identical concentrations found in freshly dissected calvaria. Calvarial sodium and magnesium levels could be varied by altering the buffer concentrations of these cations. The potassium content of metabolically poisoned calvaria incubated in buffers containing 4 mM potassium was less than 20% of the content of freshly dissected calvaria. When the buffer concentrations of sodium and potassium were systematically varied, ouabain-poisoned calvaria concentrated these cations in the bone extracellular fluid by a factor of approximately two above buffer cation levels. Presumably, the hydroxyapatite crystal zeta potential is responsible for this concentrative phenomenon. These results are discussed in terms of the control of the ionic content of the bone extracellular fluid by the postulated “bone membrane.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neuman, W.F.: The milieu interieur of bone: Claude Bernard revisited, Fed. Proc.28:1846–1850, 1969

    PubMed  CAS  Google Scholar 

  2. Neuman, W.F., Ramp, W.K.: The concept of a bone membrane: some implications. In G. Nichols, Jr., R.H. Wasserman (eds.): Cellular Mechanisms for Calcium Transfer and Homeostasis, pp. 197–206. Academic Press, New York, 1971

    Google Scholar 

  3. Ramp, W.K.: Cellular control of calcium movements in bone: Interrelationships of the bone membrane, parathyroid hormone and alkaline phosphatase, Clin. Orthop.106:311–322, 1975

    PubMed  Google Scholar 

  4. Scarpace, P.J., Neuman, W.F.: The blood:bone disequilibrium. I. The active accumulation of K+ into the bone extracellular fluid, Calcif. Tissue Res.20:137–149, 1976

    CAS  Google Scholar 

  5. Davis, W.L., Matthews, J.L., Martin, J.H., Kennedy, J.W., III, Talmage, R.V.: The endosteum as a functional membrane. In R.V. Talmage, M. Owen, J.A. Parsons (eds.): Calcium-Regulating Hormones, pp. 275–283. Excerpta Medica, Amsterdam, 1975

    Google Scholar 

  6. Neuman, W.F., Bareham, B.J.: Evidence for the presence of secondary calcium phosphate in bone and its stabilization by acid production, Calcif. Tissue Res.18:161–172, 1975

    PubMed  CAS  Google Scholar 

  7. Stroll, W.R., Neuman, W.F.: The surface chemistry of bone mineral. X. The lack of interaction between sodium and carbonate ions, J. Phys. Chem.62:377–379, 1958

    Article  Google Scholar 

  8. Neuman, W.F., Bareham, B.J.: Further studies on the nature of fluid compartmentalization in chick calvaria, Calcif. Tissue Res.17:249–255, 1975

    PubMed  CAS  Google Scholar 

  9. Barr, L., Malvin, R.L.: Estimation of extracellular spaces of smooth muscle using different-sized molecules, Am. J. Physiol.208:1042–1045, 1965

    PubMed  CAS  Google Scholar 

  10. Cremaschi, D., Hénin, S.: Extracellular space determination in gall bladder mucosa, Biochim. Biophys. Acta411:291–294, 1975

    PubMed  CAS  Google Scholar 

  11. Grim, E., Simonds, A., Oeljen, C., Cheng, J.: Inulin and mannitol distribution volumes in canine small intestinal tissues in vivo, Am. J. Physiol.224:186–190, 1973

    PubMed  CAS  Google Scholar 

  12. Neuman, W.F., Mulryan, B.J., Neuman, M.W., Lane, K.: Calcium transport systems in the chick calvaria, Am. J. Physiol.224:600–606, 1973

    PubMed  CAS  Google Scholar 

  13. Palmer, L.G., Gulati, J.: Potassium accumulation in muscle: a test of the binding hypothesis, Science194:521–523, 1976

    PubMed  CAS  Google Scholar 

  14. Neuman, W.F., Neuman, M.W.: The Chemical Dynamics of Bone Mineral. University of Chicago Press, Chicago, 1958

    Google Scholar 

  15. Leach, S.A.: Electrophoresis of synthetic hydroxyapatite, Arch. Oral Biol.3:48–56, 1960

    Article  PubMed  CAS  Google Scholar 

  16. Doss, S.K.: Surface properties of hydroxyapatite. I. The effect of various ions on the electrophoretic behavior, J. Dent. Res.55:1067–1075, 1976

    PubMed  CAS  Google Scholar 

  17. Holmes, J.M., Beebe, R.A.: Surface areas by gas adsorption on amorphous calcium phosphate and crystalline hydroxyapatite, Calcif. Tissue Res.7:163–174, 1971

    Article  PubMed  CAS  Google Scholar 

  18. Neuman, W.F., Mulryan, B.J.: Synthetic hydroxyapatite crystals. III. The carbonate system, Calcif. Tissue Res.1:94–104, 1967

    Article  PubMed  CAS  Google Scholar 

  19. Lobeck, C.C.: Studies on chloride of bone in cat and rat, Proc. Soc. Exp. Biol. Med.98:856–860, 1958

    PubMed  CAS  Google Scholar 

  20. Triffitt, J.T., Terepka, A.R., Neuman, W.F.: A comparative study of the exchange in vivo of major constituents of bone mineral, Calcif. Tissue Res.2:165–176, 1968

    Article  PubMed  CAS  Google Scholar 

  21. Poyart, C.F., Bursaux, E., Fréminet, A.: The bone CO2 compartment: evidence for a bicarbonate pool, Respir. Physiol.25:89–99, 1975

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brommage, R., Neuman, W.F. Passive accumulation of magnesium, sodium, and potassium by chick calvaria. Calcif Tissue Int 28, 57–63 (1979). https://doi.org/10.1007/BF02441218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441218

Key words

Navigation