Skip to main content

Advertisement

Log in

Identification of phosphopeptides andγ-carboxyglutamic acid-containing peptides in epiphyseal growth plate cartilage

  • Rapid Communication
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Uncalcified cartilage from the epiphyseal portion of bovine scapulae, both distant and adjacent to the epiphyseal growth plate, and the calcified cartilage of the epiphyseal growth plate itself were analyzed for the presence of O-phosphoserine [Ser(P)], O-phosphothreonine [Thr(P)] and γ-carboxyglutamic acid (Gla). Only trace amounts of these Ca2+-binding amino acids or the peptides containing them were found in the unmineralized tissues. In contrast, whole calcified cartilage, and especially the most mineralized fraction obtained by density centrifugation, contained considerable amounts of all three amino acids. Essentially all of the Gla and the majority of the Ser(P) and Thr(P) were present in non-collagenous, non-diffusible proteins extractable in EDTA at near-neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, H.C.: Vesicles associated with calcification in the matrix of epiphyseal cartilage, J. Cell Biol. 41:59–72, 1969

    Article  PubMed  CAS  Google Scholar 

  2. Bonucci, E.: The locus of initial calcification in cartilage and bone, Clin. Orthop. 78:108–139, 1971

    PubMed  CAS  Google Scholar 

  3. Brighton, C.T., Hunt, R.M.: Mitochondrial calcium and its role in calcification, Clin. Orthop. 100:406–416, 1974.

    PubMed  CAS  Google Scholar 

  4. Carmichael, D.J., Dodd, C.M.: An investigation of the phosphoprotein of bovine dentin matrix, Biochim. Biophys. Acta 317:187–192, 1973.

    PubMed  CAS  Google Scholar 

  5. Cohen-Solal, L., Lian, J.B., Kossiva, D, Glimcher, M.J.: The identification of O-phosphoserine in the soluble non-collagenous phosphoproteins of bone matrix, FEBS Lett. 89:107–110, 1978

    Article  PubMed  CAS  Google Scholar 

  6. Cohen-Solal, L., Lian, J.B., Kossiva, D., Glimcher, M.J.: Identification of organic phosphorus covalently bound to collagen and non-collagenous proteins of chicken bone matrix: the presence of O-phosphoserine and O-phosphothreonine in non-collagenous proteins, and their absence from phosphorylated collagen, Biochem. J., in press

  7. Eyre, D.R., Muir, H.: The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig, Biochem. J. 151:595–602, 1975

    PubMed  CAS  Google Scholar 

  8. Follis, R.H., Jr.: Calcification of cartilage. In R.F. Sognnaes (ed.): Calcification in Biological Systems, pp. 245–259. Am. Assoc. Adv. Science, Washington, D.C. 1960

    Google Scholar 

  9. Freudenberg, E., Gyorgy, P.: Ueber Kalkbindung durch tierische Gewebe, Biochem. Z. 110:299, 1920

    CAS  Google Scholar 

  10. Gersh, I.: Some functional considerations of ground substance of connective tissues. In C. Ragan (ed.): Connective Tissue, Trans. 2nd Conf., pp. 11–44. Josiah Macy, Jr., Foundation, New York 1952

    Google Scholar 

  11. Glimcher, M.J.: Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In R.O. Greep, E.B. Astwood (eds.): Handbook of Physiology, Endocrinology, vol. 7, pp. 25–116. Am. Physiol. Soc., Washington, D.C. 1976

    Google Scholar 

  12. Hauschka, P.V.: Quantitative determination of γ-carboxyglutamic acid in proteins, Anal. Biochem. 80:212–223, 1977

    Article  PubMed  CAS  Google Scholar 

  13. Hauschka, P.V., Lian, J.B., Gallop, P.M.: Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralized tissue, Proc. Nat. Acad. Sci. USA 72:3925–3929, 1975

    Article  PubMed  CAS  Google Scholar 

  14. Hauschka, P.V., Lian, J.B., Gallop, P.M.: Vitamin K and mineralization, Trends Biochem. Sci. 3:75–85, 1978

    Article  CAS  Google Scholar 

  15. Hirschman, A., Dziewiatkowski, D.D.: Protein-polysaccharide loss during endochondral ossification: immunochemical evidence, Science 154:393–395, 1966

    PubMed  CAS  Google Scholar 

  16. Kopito, L.: Atomic Absorption, vol. III. Clinical Chemistry Methods Manual. Fisher Scientific Co., Waltham, MA 1970

    Google Scholar 

  17. Lohmander, S., Hjerpe, A.: Proteoglycans of mineralizing rib and epiphyseal cartilage, Biochim. Biophys. Acta 404:93–109, 1975

    PubMed  CAS  Google Scholar 

  18. Martin, J.H., Matthews, J.L.: Mitochondrial granules in chondrocytes, osteoblasts and osteocytes, Clin. Orthop. 68:273–278, 1970

    PubMed  CAS  Google Scholar 

  19. Matukas, V.J., Krikos, G.A.: Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J. Cell Biol. 39:43–48, 1968

    Article  PubMed  CAS  Google Scholar 

  20. Miller, E.J.: Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains, Biochemistry 10:1652–1658, 1971

    Article  PubMed  CAS  Google Scholar 

  21. Pfaundler, F.: Ueber die Kalkadsorption tierischer Gewebe und über die grundlagen einer modernen Rachitistheorie, Munch. med. Wochschr. 50:1577, 1903

    Google Scholar 

  22. Pita, J.C., Muller, F., Howell, D.S.: Disaggregation of proteoglycan aggregate during endochondral ossification: physiological role of cartilage lysozyme. In P.M. Burleigh, A.R. Poole (eds.): Dynamics of Connective Tissue Macromolecules, pp. 247–258. Elsevier/North Holland, New York 1975

    Google Scholar 

  23. Price, P.A., Otsuka, A.S., Poser, J.W., Kristaponis, J., Raman, N.: Characterization of a γ-carboxyglutamic acid-containing protein from bone, Proc. Nat. Acad. Sci. USA 73:1447–1451, 1976

    Article  PubMed  CAS  Google Scholar 

  24. Richelle, L.J.: Contribution à l'étude du métabolisme minéral de l'os chez le rat. Ph.D. Thesis, Université de Liège, Belgium 1967

    Google Scholar 

  25. Seyer, J.M., Brickely, D.M., Glimcher, M.J.: The isolation of two types of collagen from embryonic bovine epiphyseal cartilage. Calcif. Tissue Res. 17:25–41, 1974

    PubMed  CAS  Google Scholar 

  26. Shapiro, F., Holtrop, M.E., Glimcher, M.J.: Organization and cellular biology of the perichondrial ossification groove of Ranvier: a morphological study in rabbits, J. Bone Joint Surg. 59A:703–723, 1977

    Google Scholar 

  27. Spector, A.R., Glimcher, M.J.: The extraction and characterization of soluble anionic phosphoproteins from bone, Biochim. Biophys. Acta 263:593–603, 1972

    CAS  Google Scholar 

  28. Veis, A., Perry, A.: The phosphoprotein of the dentin matrix, Biochemistry 6:2409–2416, 1967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glimcher, M.J., Kossiva, D. & Roufosse, A. Identification of phosphopeptides andγ-carboxyglutamic acid-containing peptides in epiphyseal growth plate cartilage. Calcif Tissue Int 27, 187–191 (1979). https://doi.org/10.1007/BF02441183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441183

Key Words

Navigation