Advertisement

Medical and Biological Engineering and Computing

, Volume 17, Issue 5, pp 593–601 | Cite as

Surface energetics analysis of artificial blood substitutes

  • D. H. Kaelble
  • J. Moacanin
Article

Abstract

The surface and interfacial tensions for fluorocarbon aqueous emulsions used in artificial blood substitutes are evaluated over a wide range of surfactant concentrations. The surface tension of the nonionic surfactant in water is directly correlated to the interfacial tension between aqueous and fluorocarbon phases by a surface energetics model of isolated dispersion and polar contributions to interfactial work of adhesion and interfacial tension. This study shows that the polymeric surfactant which is an A-B-A triblock copolymer, where A is polyethylene oxide and B is polypropylene oxide, displays prominent surface and interfacial tension transitions at c=1×10−7 and c=0·10 weight fraction detergent in water. The c=10−7 transition is shown to produce a prominent change in the extensibility of the fluorocarbon to water interface and formation of a strong interfacial film that enhances emulsion stabilisation.

Keywords

Bioadhesion Biocompatability Blood substitutes Emulsions Fluorocarbon Interfacial film Interfacial tension Surface energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandrup, J. andImmergut, F. H. (1975).Polymer Handbook, Wiley, 2nd edn., New York.Google Scholar
  2. Clark, L. C. andGollan, F. (1966) Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.Science,152, 1955.Google Scholar
  3. Geyer, R. P., Monroe, R. G. andTaylor (1968) Survival of rats having red cells totally replaced with emulsified fluorocarbon.Fed. Proc. Fed. Aner. Soc. Exp. Biol.,27, 952.Google Scholar
  4. Geyer, R. P. (1975) Bloodless rats through use of artificial blood substitutes.Fed. Proc. Fed. Amer. Soc. Exp. Biol.,29, 1499.Google Scholar
  5. Geyer, R. P. (1976) The design of artificial blood substitutes.In Ariens, E. J. (Ed.)Drug design, Academic Press, New York, chap.1, 1–58.Google Scholar
  6. Geyer, R. P. (1978) private communication.Google Scholar
  7. Glazman, Y. andBlaschuk (1977) On the mechanism of lyophilic sol formation.J. Coll. & Interface Sci.,62, 158.CrossRefGoogle Scholar
  8. Gollan, F. andClark, L. C. (1966) Organ perfusion with fluorocarbon fluid,The Physiologist,9, 191.Google Scholar
  9. Griffith, W. C. (1965)Emulsions, Enc. of Chemical Technology, Wiley, New York, 2nd edn., 117.Google Scholar
  10. Hansen, C. M. (1969) The universality of the solubility parameter.I & EC Product Ris. & Dev.,8, 2–11.CrossRefGoogle Scholar
  11. Harkins, W. D. andJordon, H. F. (1930) A method for determination of surface and interfacial tension from the maximum pull on a ring.J. Amer. Chem. Soc.,52, 1251.Google Scholar
  12. Israelachvili, J. N. andNinham, B. W. (1977) Intermolecular forces—the short and long of it.J. Col. & Interface Sci.,58, 14.CrossRefGoogle Scholar
  13. Kaelble, D. H. (1971)Physical Chemistry of Adhesion, Wiley, New York,76, 490.Google Scholar
  14. Kaelble, D. H. (1977) Interface degradation processes and durability,Polymer Sci. & Eng.,17, 475.Google Scholar
  15. Kaelble, D. H. andMoacanin, J. (1977) A surface energy analysis of bioadhesion.Polymer,18, 475.CrossRefGoogle Scholar
  16. Maugh, T. H. Jun., (1973) Perfluorochemical emulsions: promising blood substitutes.Science,179, 669.Google Scholar
  17. Napper, D. H. (1977) Steric stabilization.J. Col. & Interface Sci.,58, 390.CrossRefGoogle Scholar
  18. Myilas, E., Morton, W. A., Lederman, D. M., Chiu, T-H. andCumming, R. D. (1975) Interdependence of hemodynamic and surface parameters in thrombosis.Trans. Amer. Soc. Artif. Int. Organs,21, 55.Google Scholar
  19. Schmolka, I. R. (1970) Theory of emulsions.Fed. Proc. Fed. Amer. Soc. Exp. Biol.,29, 1717.Google Scholar
  20. Sherman, P. O., Smith, S. andJohannessen, B. (1969) Textile characteristics affecting the release of soil during laundering.Textile Res.,39, 449.Google Scholar
  21. Zuidema, H. H. andWaters, G. W. (1941) Ring method for the determination of interfacial tension.Ind. & Eng. Chem., Anal'Ed.,13, 312.CrossRefGoogle Scholar

Copyright information

© IFMBE 1979

Authors and Affiliations

  • D. H. Kaelble
    • 1
    • 2
  • J. Moacanin
    • 1
    • 2
  1. 1.Rockwell International Science CentreThousand OaksUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations