On the poisson bracket algebra of monodromy matrices

  • A. Duncan
  • H. Nicolai
  • M. Niedermaier
Article

Abstract

We present a new method to deal with the endpoint ambiguities which arise in the calculation of Poisson brackets of monodromy matrices in the principal chiral model. In contrast to previous proposals our prescription yields the Yang-Baxter equation already at the classical level.

Keywords

Poisson Bracket Jacobi Identity Monodromy Matrix Monodromy Matrice Monodromy Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Faddeev, in: Les Houches Lectures 1982, Amsterdam: North Holland 1983Google Scholar
  2. 1a.
    H.J. de Vega: Int. J. Mod. Phys. A4 (1989) 2371MATHCrossRefADSGoogle Scholar
  3. 2.
    M. Lüscher, K. Pohlmeyer: Nucl. Phys. B 137 (1978) 46CrossRefADSGoogle Scholar
  4. 3.
    H.J. de Vega, H. Eichenherr, J.M. Maillet: Commun. Math. Phys. 92 (1984) 507; Nucl. Phys. B 240 (1984) 377MATHCrossRefGoogle Scholar
  5. 4.
    L.D. Faddeev, N.Y. Reshetikhin: Ann. Phys. 167 (1986) 227MathSciNetCrossRefADSGoogle Scholar
  6. 5.
    J.M. Maillet: Nucl. Phys. B269 (1986) 54MathSciNetCrossRefADSGoogle Scholar
  7. 6.
    A.G. Izergin, V.E. Korepin: Commun. Math. Phys. 79 (1981) 303MathSciNetCrossRefADSGoogle Scholar
  8. 7.
    A.A. Belavin, V.G. Drinfeld: Funct. Anal. Appl. 16 (1982) 1MATHMathSciNetCrossRefGoogle Scholar
  9. 8.
    M. Lüscher: Nucl. Phys. B 135 (1978) 1CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Duncan
    • 1
  • H. Nicolai
    • 2
  • M. Niedermaier
    • 3
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  2. 2.II. Institute for Theoretical PhysicsUniversity of HamburgHamburg 50Federal Republic of Germany
  3. 3.Deutsches Elektronen-SynchrotronDESYHamburg 52Federal Republic of Germany

Personalised recommendations