Effects of 17β-estradiol and its isomer 17α-estradiol on learning in rats with chronic cholinergic deficiency in the brain

  • N. N. Lermontova
  • V. K. P'chev
  • B. K. Beznosko
  • G. I. Van'kin
  • T. A. Ivanova
  • I. V. Koroleva
  • E. A. Lukoyanova
  • T. V. Mukhina
  • T. P. Serkova
  • S. O. Bachurin
General Pathology and Pathological Physiology

Abstract

It was shown for the first time that estrogens 17β- and 17α-estradiols compensate impaired cognitive functions in rats with partial chronic deprivation of cholinergic functions in the central nervous system induced by intracerebral administration of selective cholinergic neurotoxin AF64A. 17β-Estradiol produced strong dose-dependent changes in the weights of hormone-sensitive endocrine glands, while 17α-estradiol did not affect the weight of the gonads and slightly influenced (in high concentration) the weights of the adrenal glands and thymus. The positive effects of exogenous 17β- and 17α-estradiols on cognitive functions are due to their antioxidant properties, rather than due to specific action on hormone-sensitive endocrine glands.

Key Words

17β- and 17α-estradiosl neurotoxin AF64A active avoidance rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Barkhem, B. Carlsson, Y. Nilsson,et al., Mol. Pharmacol.,54, 105–112 (1998).PubMedGoogle Scholar
  2. 2.
    C. Behl, T. Skutella, F. Lezoualc'h,et al.,—Ibid.,51, 535–541 (1997).PubMedGoogle Scholar
  3. 3.
    D. B. Dubal, P. J. Shughrue, M. E. Wilson,et al., J. Neurosci.,19, 6385–6393 (1999).PubMedGoogle Scholar
  4. 4.
    A. J. Fader, P. E. Johnson, G. P. Dohanich,et al., Pharmacol. Biochem. Behav.,62, No. 4, 711–717 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Fisher, C. Mantione, D. Abraham, and I. Hanin,J. Pharm. Exp. Ther., No. 22, 140–145 (1982).Google Scholar
  6. 6.
    R. B. Gibbs, A. M. Burke, and D. A. Johnson,Horm. Behav.,34, 112–125 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    N. V. Gulyaeva, N. A. Lazareva, N. L. Libe,et al., Brain Res.,726, 174–180 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    V. W. Henderson, A. Paganini-Hill, C. K. Emanuel,et al., Arch. Neurol.,51, No. 9, 896–900 (1994).PubMedGoogle Scholar
  9. 9.
    N. Laflamme, R. E. Nappi, G. Drolet,et al., J. Neurobiol.,36, 357–378 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Lannert, P. Wirtz, V. Schuhmann,et al., J. Neural. Transm.,105, 1045–1063 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    N. N. Lermontova, N. V. Lukoyanov, T. P. Serkova,et al., Mol. Chem. Neuropathol.,33, 51–61 (1998).PubMedGoogle Scholar
  12. 12.
    W. R. Markesbery,Free Radic. Biol. Med.,23, 134–147 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Romer, M. Oettel, B. Menzenbach,et al., Steroids,62, No. 11, 688–694 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Rupprecht and F. Holsboer,TINS,22, No. 9, 410–416 (1999).PubMedGoogle Scholar
  15. 15.
    T. Walsh and K. Opello,Toxin-Induced Models of Neurological Disorders, Eds. M. Woodruff and A. Nonneman, New York (1994), pp. 259–279.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • N. N. Lermontova
    • 1
  • V. K. P'chev
    • 2
  • B. K. Beznosko
    • 1
  • G. I. Van'kin
    • 1
  • T. A. Ivanova
    • 1
  • I. V. Koroleva
    • 1
  • E. A. Lukoyanova
    • 1
  • T. V. Mukhina
    • 1
  • T. P. Serkova
    • 1
  • S. O. Bachurin
    • 1
  1. 1.Laboratory of Neurochemistry, Institute of Physiologically Active SubstancesRussian Academy of SciencesChernogolovka, Moscow region
  2. 2.JenapharmGermany

Personalised recommendations