Quantitative and predictive correlations for peroxidase catalysis in organic media

  • Keungarp Ryu
  • Jonathan S. Dordick


Quantitative and predictive relationships have been developed for horseradish peroxidase catalysis in both aqueous and organic media. These relationships take into account the physicochemical characteristics of both substrate (e.g., hydrophobicity and electronic characteristics) and solvent (e.g., hydrophobicity and polarity). The results suggest that solvent effects on hydrophobic interactions within proteins are secondary to effects on electrostatic forces.


Catalytic Efficiency Organic Medium Enzymatic Catalysis Butyl Acetate Nonaqueous Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berezin, I. V., Kazanskaya, N. F., Klyosov, A. A., and Martinek, K. (1971),FEBS Lett. 215, 125–128.CrossRefGoogle Scholar
  2. Cerveny, L. and Ruzivka, V. (1981).Adv. Catal. 30, 335–375.CrossRefGoogle Scholar
  3. Connors, K. A. and Sun, S. (1971),J. Am. Chem. Soc. 93, 7239–7244.CrossRefGoogle Scholar
  4. Dordick, J. S., Marletta, M. A., and Klibanov, A. M. (1987)Biotechnol. Bioeng. 30, 31–36.CrossRefGoogle Scholar
  5. Dordick, J. S. (1989). Principles and Applications of Nonaqueous Enzymology. in:Applied Biocatalysis, H. W. Blanch and D. S. Clark, eds. vol. 1, pp. 1–51, New York: Marcel Dekker.Google Scholar
  6. Dunford, H. B. and Adeniran, A. J. (1986).Arch. Biochem. Biophys. 251, 536–542.CrossRefGoogle Scholar
  7. Flick, E. W. (1985), “Industrial Solvent Handbook”, New York: Noyes Data Co.Google Scholar
  8. Hammett, L. P. (1970),Physical Organic Chemistry, 2nd Ed., New York: McGraw-Hill.Google Scholar
  9. Hansch, C. and Coats, E. (1970),J. Pharm. Sci. 59, 731–743.Google Scholar
  10. Hansch, C. and Leo, A. (1979),Substituent Constants for Correlation Analysis in Chemistry and Biology, New York: Wiley Interscience.Google Scholar
  11. Hansch, C. and Klein, T. E. (1986).Acc. Chem. Res. 19, 392–400.CrossRefGoogle Scholar
  12. Järv, J., Kesvatera, T., and Aaviksaar, A. (1976),Eur. J. Biochem. 67, 315–322.CrossRefGoogle Scholar
  13. Kanerva, L. T. and Klibanov, A. M. (1989),J. Am. Chem. Soc. 111, 6864–6866.CrossRefGoogle Scholar
  14. Klibanov, A. M. (1989),Trends Biochem. Sci. 14, 141–144.CrossRefGoogle Scholar
  15. Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987),Biotechnol. Bioeng. 30, 80–87.CrossRefGoogle Scholar
  16. Morgenstern, L., Recanatini, M., Klein, T. E., Steinmetz, W., Yang, C., Langridge, R., and Hansch, C. (1987),J. Biol. Chem. 262, 10767–10772.Google Scholar
  17. Ryu, K. and Dordick, J. S. (1989),J. Am. Chem. Soc. 111, 8026–8028.CrossRefGoogle Scholar
  18. Ryu, K., Stafford, D. R., and Dordick, J. S. (1989).ACS Symp. Ser. 392, 141–157.CrossRefGoogle Scholar
  19. Ryu, K. and Dordick, J. S. (1992).Biochemistry (in press).Google Scholar
  20. Reichardt, C. (1979),Solvent Effects in Organic Chemistry, New York: Verlag Chemie.Google Scholar

Copyright information

© Science & Technology Letters 1992

Authors and Affiliations

  • Keungarp Ryu
    • 1
  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of IowaIowa City

Personalised recommendations