Journal of Nonlinear Science

, Volume 6, Issue 3, pp 271–292 | Cite as

An impetus-striction simulation of the dynamics of an elastica

  • D. J. Dichmann
  • J. H. Maddocks
Article

Summary

This article concerns the three-dimensional, large deformation dynamics of an inextensible, unshearable rod. To enforce the conditions of inextensibility and unshearability, a technique we call the impetus-striction method is exploited to reformulate the constrained Lagrangian dynamics as an unconstrained Hamiltonian system in which the constraints appear as integrals of the evolution. We show here that this impetus-striction formulation naturally leads to a numerical scheme which respects the constraints and conservation laws of the continuous system. We present simulations of the dynamics of a rod that is fixed at one end and free at the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. S. Antman,Nonlinear Problems of Elasticity, (Springer-Verlag, New York, 1994).Google Scholar
  2. [2]
    V. I. Arnold, V. V. Kozlov & A. I. Neishtadt. Mathematical aspects of classical and celestial mechanics, inDynamical Systems III, Encyclopœdia of the Mathematical Sciences Volume 3, ed. V. I. Arnold, (Springer-Verlag, New York, 1988).Google Scholar
  3. [3]
    O. Bottema & B. Roth.Theoretical Mechanics (Dover, 1979).Google Scholar
  4. [4]
    K. E. Brenan, S. L. Campbell & L. R. Petzold,Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, (SIAM, Philadelphia, 1995).Google Scholar
  5. [5]
    J. M. Charap, ed.Geometry of Constrained Dynamical Systems (Publications of the Newton Institute, Cambridge Press, 1995).Google Scholar
  6. [6]
    D. J. Dichmann. Hamiltonian Dynamics of an Elastica and Stability of Solitary Waves. Ph.D. thesis, University of Maryland (1994).Google Scholar
  7. [7]
    D. J. Dichmann, Y. W. Li & J. H. Maddocks. Hamiltonian formulations and symmetries in rod mechanics, inMathematical Approaches to Biomolecular Structure and Dynamics, J. P. Mesiroy, K. Schulten & D. W. Sumners, eds., IMA Volumes in Mathematics and Its Applications,82, (Springer-Verlag, New York, 1996), 71–113.Google Scholar
  8. [8]
    D. J. Dichmann, J. H. Maddocks & R. L. Pego. Hamiltonian dynamics of an elastica and the stability of solitary waves.Arch. Rat. Mech. Anal. To appear.Google Scholar
  9. [9]
    D. J. Dichmann, J. H. Maddocks & J. M. Xu. Three-dimensional Hamiltonian dynamics of an elastica. In preparation.Google Scholar
  10. [10]
    P. A. M. Dirac. On generalized Hamiltonian dynamics,Can. J. Math. 2 (1950) 129–148.MATHMathSciNetGoogle Scholar
  11. [11]
    O. Gonzalez. Mechanical systems subject to holonomic constraints: unconstrained formulations and conservative integration.Physica D, submitted.Google Scholar
  12. [12]
    O. Gonzalez & J. C. Simo. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity.Comput. Methods Appl. Mech. Eng., submitted.Google Scholar
  13. [13]
    J. Junkins & J. Turner,Optimal Spacecraft Rotational Maneuvers, (Elsevier, Amsterdam, 1986).Google Scholar
  14. [14]
    I. Klapper. Biological applications of the dynamics of twisted elastic rods.J. Comput. Phys. To appear.Google Scholar
  15. [15]
    F. Klein & A. Sommerfeld.Über die Theorie des Kriesels (Johnson Reprint, 1965).Google Scholar
  16. [16]
    B. Leimkuhler & S. Reich. Symplectic integration of constrained Hamiltonian systems.Math. Comp. 63 (1994) 589–605.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Leimkuhler & R. Skeel. Symplectic numerical integrators in constrained Hamiltonian systems,J. Comp. Phys. 112 (1994) 117–125.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. H. Maddocks & D. J. Dichmann. Conservation laws in the dynamics of rods.J. Elasticity 34 (1994) 83–96.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. H. Maddocks & R. L. Pego. An unconstrained Hamiltonian formulation for incompressible fluid flow.Comm. Math. Phys. 170 (1995) 207–217.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. M. Sanz-Serna and M. P. Calvo.Numerical Hamiltonian Problems, (Chapman & Hall, New York, 1994).Google Scholar
  21. [21]
    J. C. Simo, N. Tarnow & M. Doblare. Nonlinear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms.Int. J. Numer. Methods Eng. 38 (1995) 1431–1473.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. C. Simo & L. Vu-Quoc. A three-dimensional finite-strain rod model. Part II: Computational aspects.Comput. Methods Appl. Mech. Eng. 58 (1986) 79–116.MATHCrossRefGoogle Scholar
  23. [23]
    J. C. Simo & L. Vu-Quoc. On the dynamics in space of rods undergoing large motions: A geometrically exact approach.Comput. Methods Appl. Mech. Eng. 66 (1988) 125–161.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Tabor & I. Klapper. Dynamics of twist and writhe and the modeling of bacterial fibers, inMathematical Approaches to Biomolecular Structure and Dynamics, J. P. Mesirov, K. Schulten & D. W. Sumners, eds., IMA Volumes in Mathematics and Its Applications,82, (Springer-Verlag, New York, 1996), 139–160.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • D. J. Dichmann
    • 1
    • 2
  • J. H. Maddocks
    • 1
    • 2
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations