Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 129, Issue 4, pp 380–382 | Cite as

Effect of prenatal stress on proliferative activity and chromosome aberrations in embryo brain in rats with different excitability of the nervous system

  • A. I. Vaido
  • N. V. Shiryaeva
  • V. V. Vshivtseva
Genetics

Abstract

Stress during pregnancy affects the morphogenesis of embryonal brain, its structural and functional characteristics, and behavior of the progeny. Genetic mechanisms of this process remain unclear. Cytogenetic characteristics of neuroblasts were analyzed in 17–18-day embryos of rats selected by threshold excitability of the nervous system in health and after emotional painful stress during the third trimester of pregnancy. The strains differed by the effect of stress on proliferative activity and chromosome aberrations in cells of the future hippocampus depending on the strain-specific characteristics of the nervous system excitability. This effect is regarded as an important component of epigenetic regulation of neurogenesis and behavior.

Key Words

excitability of the nervous system proliferation chromosome aberrations prenatal stress rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. K. Belyaev and P. M. Borodin,Evolution Genetics [in Russian], Leningrad (1982), pp. 35–59.Google Scholar
  2. 2.
    A. I. Vaido and M. Kh. Sitdikov,Genetika,15, No. 1, 144–148 (1979).Google Scholar
  3. 3.
    N. I. Dmitrieva and St. Gocco,Arch. Anat.,88, No. 2, 5–10 (1985).Google Scholar
  4. 4.
    N. A. Dyuzhikova, E. V. Tokmacheva, and N. G. Lopatina,Genetika,33, No. 8, 1077–1082 (1997).Google Scholar
  5. 5.
    N. N. Dygalo, G. T. Shimyakina, and T. S. Kalinina,Modern Concepts of Evolutional Genetics [in Russian], Novosibirsk (1997), Pt I, pp. 93–95.Google Scholar
  6. 6.
    N. G. Kamyshev, E. V. Savvateeva, and V. V. Ponomarenko,Physiological and Behavioral Genetics [in Russian], Leningrad (1981), pp. 156–190.Google Scholar
  7. 7.
    A. A. Nikitina, N. V. Shiryaeva, A. I. Vaido,et al., Zh. Evoluts. Biokhim.,34, No. 5, 570–575 (1998).Google Scholar
  8. 8.
    K. Yu. Reznikov,Proliferation of Brain Cells in Vertebrates under Conditions of Normal Development of the Brain and in Brain Injury [in Russian], Moscow (1981).Google Scholar
  9. 9.
    S. Fukudo, K. Abe, M. Hongo,et al., Brain Res.,16, No. 57(1), 146–148 (1997).CrossRefGoogle Scholar
  10. 10.
    K. Hecht, K. Treptov, S. Choinovski, and M. Peshel,Die Raumzeitliche Organization der Reitz-Reactions-Beziehungen bedingtreflectorischer Processe, Wein (1972).Google Scholar
  11. 11.
    H. E. Jones, M. A. Ruscio, L. A. Keyser,et al., Brain Res. Bull.,42, No. 5, 341–346 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Lordi, P. Protais, D. Mellier, and S. Gaston,Physiol. Behav.,62, No. 5, 1087–1092 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Le Greves, H. S. Sharma, J. Westman,et al., Acta Neurochir. Suppl.,70, 275–278 (1997).PubMedGoogle Scholar
  14. 14.
    E. Senba and T. Veyama,Neurosci. Res.,29, No. 3, 183–207 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    S. V. Velucci and R. F. Parrott,Neuropeptides,31, No. 5, 431–438 (1997).CrossRefGoogle Scholar
  16. 16.
    M. T. Williams, M. B. Hennesy, and H. N. Davis,Physiol. Behav., No. 63(3), 337–343 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publsihers 2000

Authors and Affiliations

  • A. I. Vaido
    • 1
  • N. V. Shiryaeva
    • 1
  • V. V. Vshivtseva
    • 1
  1. 1.Laboratory of Genetics of Higher Nervous Activity, I. P. Pavlov Institute of PhysiologyRussian Academy of SciencesSt. Petersburg

Personalised recommendations