Skip to main content
Log in

Adaptation to periodic high-altitude hypoxia inhibits baroreflex vagal bradycardia in rats

  • General Pathology and Pathological Physiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

A 3-week course of adaptation to high-altitude hypoxia (4500 m above sea level) inhibited baroreflex avagal bradycardia induced by a rapid rise of systemic blood pressure in conscious rats. Bradycardic responses to electrical stimulation of peripheral end of the right vagus nerve and methacholine (M2 muscarinic receptor agonist) in hypoxia-adapted rats did not differ from the control. It is concluded that hypoxia inhibits baroreflex vagal bradycardia by acting on a central element of the baroreceptor reflex arch

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Koshelev, O. S. Tarasova, T. P. Storozhevykh,et al., Fiziol. Zh. SSSR,77, 123–129 (1991).

    PubMed  CAS  Google Scholar 

  2. I. N. Man'kovskaya, M. M. Seredenko, A. I. Nazarenko,et al., Hypoxia Med. J.,2, 10–11 (1994).

    Google Scholar 

  3. T. G. Coleman,Am. J. Physiol.,238, 515–520 (1980).

    Google Scholar 

  4. L. H. Crockatt, D. Lund, P. G. Schmid,et al., J. Appl. Physiol.,50, 1017–1021 (1981).

    PubMed  CAS  Google Scholar 

  5. G. A. Head and R. McCarty,J. Autonom. Nerv. Syst.,21, 203–213 (1987).

    Article  CAS  Google Scholar 

  6. R. Kasimi, J. Richalet, and B. Crozatier,J. Appl. Physiol.,75, 1123–1128 (1993).

    Google Scholar 

  7. N. K. Khitrov, E. B. Tezikov, and S. B. Grachev,Stress, New York (1983), p. 295.

  8. M. Kongo, R. Yamamoto, M. Kobayashi,et al., Exp. Physiol.,84, 47–56 (1999).

    PubMed  CAS  Google Scholar 

  9. F. Leon-Velarde, J. Richalet, J. Chavez,et al., J. Appl. Physiol.,81, 2229–2234 (1996).

    PubMed  CAS  Google Scholar 

  10. C. A. Murphy, R. P. Sloan, and M. M. Myers,J. Autonom. Nerv. Syst.,36, 237–250 (1991).

    Article  CAS  Google Scholar 

  11. M. N. Obreztchikova, O. S. Tarasova, V. B. Koshelev,et al., Hypoxia Med. J.,7, 10–14 (1999).

    Google Scholar 

  12. G. Parati, M. Di Rienzo, M. R. Bonsignore,et al., J. Hypertens.,15, 1621–1626 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. T. E. Pissari and J. E. Kendrick,Am. J. Physiol.,247, 623–630 (1984).

    Google Scholar 

  14. S. Sagawa, R. Torri, K. Nagaya,et al.,Ibid.,,273, 1219–1223 (1997).

    Google Scholar 

  15. M. G. Ziegler, R. A. Nelesen, P. J. Mills,et al., Sleep,18, 859–865 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Obrezchikova.

Additional information

Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 129, No. 4, pp. 386–389, April, 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obrezchikova, M.N., Tarasova, O.S., Borovik, A.S. et al. Adaptation to periodic high-altitude hypoxia inhibits baroreflex vagal bradycardia in rats. Bull Exp Biol Med 129, 327–329 (2000). https://doi.org/10.1007/BF02439257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439257

Key words

Navigation