Skip to main content
Log in

Expression of circular and linearized bacterial chloramphenicol acetyltransferase genes with or without viral promoters after injection into fertilized eggs, unfertilized eggs and oocytes ofXenopus laevis

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

Circular and linearized plasmids containing bacterial chloramphenicol acetyltransferase (CAT) genes connected or not connected to viral promoters were injected into fertilized eggs, unfertilized eggs and oocyte nuclei ofXenopus laevis, and CAT enzyme expression was studied under different conditions. Circular DNAs injected into fertilized eggs did not change their molecular form greatly, but CAT enzyme activity was expressed by the blastula or gastrula stage depending on the strength of the enhancer contained within the promoter. Linearized plasmid DNAs injected into fertilized eggs were concatemerized and replicated extensively by the blastula stage, and were expressed also actively irrespective of whether DNAs contained the promoter or not. The CAT enzyme activity was roughly comparable to the level of CAT mRNA in injected embryos. Similar results were obtained for both circular and linearized DNAs in unfertilized eggs, although the level of CAT enzyme expressed here was quite low. In oocyte nuclei, by contrast, only circular DNAs were expressed, and the expression was independent of whether or not the DNAs contained the promoter. The large concatemers formed in embryos comigrated with host DNA, but the majority of them disappeared later, at the tadpole stage, suggesting the extrachromosomal nature of these DNAs. The pronounced decrease in the amount of comigrating DNAs was accompanied by the disappearance of both CAT mRNA and enzyme activity. Therefore, we conclude that active CAT enzyme expression induced by injection of linearized DNAs in embryos and early stage larvae is due mainly to transcription from the transiently existing extra-chromosomal concatermers rather than from long-lasting, probably genome-integrated DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemoto Y, Okada K (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci USA 84:5565–5569

    Article  PubMed  CAS  Google Scholar 

  • Andres A-C, Muellner DB, Ryffel GU (1984) Persistence, methylation and expression of vitellogenin gene derivatives after injection into fertilized eggs ofXenopus laevis. Nucleic Acids Res 12:2283–2302

    PubMed  CAS  Google Scholar 

  • Araki E, Shimada E, Shichiri M, Mori M, Ebina Y (1988) pSV00CAT: low background CAT plasmid. Nucleic Acids Res 16:1627

    PubMed  CAS  Google Scholar 

  • Bendig MM (1981) Persistence and expression of histone genes injected intoXenopus laevis eggs in early development. Nature 292:65–67

    Article  PubMed  CAS  Google Scholar 

  • Bendig MM, Williams JG (1983) Replication and expression ofXenopus laevis globin genes injected into fertilizedXenopus eggs. Proc Natl Acad Sci USA 80:6197–6201

    Article  PubMed  CAS  Google Scholar 

  • Bendig MM, Williams JG, (1984) Differential expression of theXenopus laevis tadpole and adult β-globin genes when injected into fertilizedXenopus laevis eggs. Mol Cell Biol 4:567–570

    PubMed  CAS  Google Scholar 

  • Berg CA, Gall JG (1986) MicroinjectedTetrahymena rDNA ends are not recognized as telomers inXenopus eggs. J Cell Biol 103:691–698

    Article  PubMed  CAS  Google Scholar 

  • Busby SJ, Reeder RH (1983) Spacer sequences regulate transcription of ribosomal gene plasmids injected intoXenopus embryos. Cell 34:989–996

    Article  PubMed  CAS  Google Scholar 

  • Dumont JN (1972) Oogenesis inXenopus laevis (Daudin). 1. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–180

    Article  PubMed  CAS  Google Scholar 

  • Etkin LD, Balcells S (1985) TransformedXenopus embryos as a transient expression system to analyze gene expression at the midblastula transition. Dev Biol 108:173–178

    Article  PubMed  CAS  Google Scholar 

  • Etkin L, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection intoXenopus laevis eggs. Development 99:15–23

    PubMed  CAS  Google Scholar 

  • Etkin LD, Pearman B, Roberts M, Bektesh S (1984) Replication, integration and expression of exogenous DNA injected into fertilized eggs ofXenopus laevis. Differentiation 26:194–202

    PubMed  CAS  Google Scholar 

  • Etkin LD, Pearman B, Ansah-Yiadom R (1987) Replication of injected DNA templates inXenopus embryos. Exp Cell Res 169:468–477

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Sato K, Hosokawa K, Shiokawa K (1989) Expression of circular plasmids which contain bacterial chloramphenicol acetyltransferase gene connected to the promoter of polypeptide IX of human adenovirus type 12 in oocytes, eggs and embryos ofXenopus laevis. Zool Sci (in press)

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinat genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Melton DA (1981) Gene transfer in amphibian eggs and oocytes. Annu Rev Genet 15:189–218

    Article  PubMed  CAS  Google Scholar 

  • Harland RM, Laskey RA, (1980) Regulated replication of DNA microinjected into eggs ofXenopus laevis. Cell 21:761–771

    Article  PubMed  CAS  Google Scholar 

  • Harland RM, Weintraub H, McKnight SL (1983) Transcription of DNA injected intoXenopus oocytes is influenced by template topology. Nature 302:38–43

    Article  PubMed  CAS  Google Scholar 

  • Hines PJ, Benbow RM (1982) Initiation of replication at specific origins in DNA molecules microinjected into unfertilized eggs of the frogXenopus laevis. Cell 30:459–468

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Su RT (1987) Association of viral and plasmid DNA with the nuclear matrix during productive infection. Biochim Biophys Acta 910:52–62

    PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1985) Developmental regulation of a gastrula-specific gene injected into fertilizedXenopus eggs. EMBO J 4:3463–3471

    PubMed  CAS  Google Scholar 

  • Krieg PA, Melton DA (1987) An enhancer responsible for activating transcription at the midblastula transition inXenopus development. Proc Natl Acad Sci USA 84:2331–2335

    Article  PubMed  CAS  Google Scholar 

  • Kruczek I, Doerfler W (1983) Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of adenovirus type 12 promoters: effect of promoter methylation on gene expression. Proc Natl Acad Sci USA 80:7586–7590

    Article  PubMed  CAS  Google Scholar 

  • Laimins LA, Gruss P, Pozzatti R, Khoury G (1984) Characterization of enhancer elements in the long terminal repeat of Moloney murine sarcoma virus. J Virol 49:183–189

    PubMed  CAS  Google Scholar 

  • Langner KD, Weyer U, Doerfler W (1986)Trans effect of the E1 region of adenoviruses on the expression of a prokaryotic gene in mammalian cells: resistance of 5′-CCGG-3′ methylation. Proc Natl Acad Sci USA 83:1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Marini NJ, Etkin LD, Benbow RM (1988) Persistence and replication of plasmid DNA microinjected into early embryos ofXenopus laevis. Dev Biol 127:421–434

    Article  PubMed  CAS  Google Scholar 

  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056

    PubMed  CAS  Google Scholar 

  • Mohun TJ, Garrett N, Gurdon JB (1986) Upstream sequences required for tissue-specific activation of the cardiac actin gene inXenopus laevis embryos. EMBO J 5:3185–3193

    PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table ofXenopus laevis Daudin. North-Holland Amsterdam

    Google Scholar 

  • Probst E, Kressmann A, Birnstiel ML (1979) Expression of sea urchin histone genes in the oocyte ofXenopus laevis. J Mol Biol 135:709–732

    Article  PubMed  CAS  Google Scholar 

  • Roeder RG (1974) Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase inXenopus laevis. J Biol Chem 249:249–256

    PubMed  CAS  Google Scholar 

  • Rosenthal N, Kress M, Gruss P, Khoury G (1983) BK viral enhancer element and a human cellular homolog. Science 222:749–755

    PubMed  CAS  Google Scholar 

  • Rusconi S, Schaffner W (1981) Transformation of frog embryos with a rabbit β-globin gene. Proc Natl Acad Sci USA 78:5051–5055

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Yamana K (1967) Pattern of RNA synthesis in isolated cells ofXenopus laevis embryos. Dev Biol 16:368–388

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Sameshima M, Tashiro K, Miura T, Nakakura N, Yamana K (1986) Formation of nucleus-like structures in the cytoplasm of DNA-injected fertilized eggs and its partition into blastomeres during early embryogenesis inXenopus laevis. Dev Biol 116:539–542

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Tashiro K, Yamana K, Sameshima M (1987) Electron microscopic studies of giant nucleus-like structure formed by λDNA introduced into the cytoplasm ofXenopus laevis fertilized eggs and embryos. Cell Differ 20:253–261

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Fu Y, Nakakura N, Tashiro K, Sameshima M, Hosokawa K (1989a) Effects of the injection of exogenous DNAs on gene expression in early embryos and coenocytic egg cells ofXenopus laevis. 198:78–84

    CAS  Google Scholar 

  • Shiokawa K, Yamazaki T, Fu Y, Tashiro K, Tsurugi K, Motizuki M, Ikegami Y, Araki E, Andoh T, Hosokawa K (1989b) Persistence and expression of circular DNAs encodingDrosophila amylase, bacterial chloramphenicol acetyltransferase, and others inXenopus laevis embryos. Cell Struct Funct 14:261–269

    Article  PubMed  CAS  Google Scholar 

  • Steinbeisser H, Hofmann A, Stutx F, Trendelenburg MF (1988) Different regulatory elements are required for cell-type and stage specific expression of theXenopus levis skeletal muscle actin gene upon injection inX. laevis oocytes and embryos. Nucleic Acids Res 16:3223–3238

    PubMed  CAS  Google Scholar 

  • Tashiro K, Inoue M, Sakaki Y, Shiokawa K (1986a) Preservation ofXenopus laevis rDNA-containing plasmid, pX1r101A, injected into the fertilized egg ofXenopus laevis. Cell Struct Funct 11:109–114

    PubMed  CAS  Google Scholar 

  • Tashiro K, Shiokawa K, Yamana K, Sakaki Y (1986b) Structual analysis of ribosomal DNA homologues in nucleolusless mutant ofXenopus laevis. Gene 44:299–306

    Article  PubMed  CAS  Google Scholar 

  • Wickens MP, Woo S, O’Malley BW, Gurdon JB (1980) Expression of a chicken chromosomal ovalbumin gene injected into frog oocyte nuclei. Nature 285:628–634

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Cross GS, Woodland HR (1986) Tissue-specific expression of actin genes injected intoXenopus embryos. Cell 47:589–599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Hosokawa, K. & Shiokawa, K. Expression of circular and linearized bacterial chloramphenicol acetyltransferase genes with or without viral promoters after injection into fertilized eggs, unfertilized eggs and oocytes ofXenopus laevis . Roux’s Arch Dev Biol 198, 148–156 (1989). https://doi.org/10.1007/BF02438940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02438940

Key words

Navigation