Roux's archives of developmental biology

, Volume 198, Issue 3, pp 129–136 | Cite as

Removal of the polar lobe leads to the formation of functionally deficient photocytes in the annelidChaetopterus variopedatus

  • Jonathan J. Henry


The light emitting photocytes ofChaetopterus variopedatus larvae are bilaterally situated within the ectoderm of the post-trochal region. Their histological appearance is similar to that of the adult photocytes. The larval photocytes contain a large quantity of membranous secretory vesicles (photosomes), which probably contain the photoluminescent protein. The two-cellChaetopterus embryo contains a small AB and a large CD blastomere. Previous studies have shown that only the “larvae” resulting from isolated CD blastomeres are able to luminesce. Consistent with these findings, morphologically distinct photocytes are only found in the CD larvae. The removal of the small polar lobe that forms during first cleavage leads to the production of a “larva” that is unable to produce light. All delobed larvae contain morphologically distinct photocytes, which are identical to those in normal larvae except they appear to contain only a small quantity of photosomes. Experimental equalization of first cleavage leads to the production of a double embryo. While photocytes are found in both of the duplicated post-trochal regions, usually only one of these is capable of emitting luminescence. Apparently, the highly localized vagetal material (determinants) responsible for functional light emission is distributed to both halves in only a few cases when first cleavage is experimentally “equalized”. These results indicate that the determinative action of the polar lobe is not required for the formation of the photocytes themselves, but rather for their ability to function as emitters of light. The determinants in the polar lobe ofChaetopterus may control some aspect of the photoluminescence reaction itself, such as the production of the photoprotein.

Key words

Bioluminescence Polar lobe Spiralian development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JM, Cormier MJ (1973) Lurnisomes, the cellular site of bioluminescence in Coelenterates. J Biol Chem 248:2937–2943PubMedGoogle Scholar
  2. Bassot J-M (1966) Une forme microtubulaire et paracristalline de reticulum endoplasmique dans les photocytes des Annelides Polynoïac. J Cell Biol 31:135–158PubMedCrossRefGoogle Scholar
  3. Bassot J-M, Bilbaut A (1977) Bioluminescence des élytres d’Acholoë. IV. Luminescence et fluorescence des photosomes. Biol Cell 28:163–168Google Scholar
  4. Bonhomme C (1943) L’appereil lumineux deChaetopterus variopedatus Clap. Recherches histologiques. Bull Inst Océanogr Monaco 40: No 843, 1–7Google Scholar
  5. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357PubMedGoogle Scholar
  6. Cather JN, Verdonk NH (1974) The development ofBithynia tentaculata (Prosobranchia, Gastropoda) after removal of the polar lobe. J Embryol Exp Morphol 31:415–422PubMedGoogle Scholar
  7. Cather JN, Verdonk NH (1979) Development ofDentalium following the removal of D-quadrant blastomeres at successive cleavage stages. Wilhelm Roux’s Arch 187:355–366CrossRefGoogle Scholar
  8. Cather JN, Verdonk NH, Dohmen MR (1976) Role of the vegetal body in the regulation of development inBithynia tentaculata (Prosobranchia, Gastropoda). Am Zool 16:455–468Google Scholar
  9. Clement AC (1952) Experimental studies on germinal localization inHaynassa. I. The role of the polar lobe in determination of the cleavage pattern and its influence on later development. J Exp Zool 121:563–626CrossRefGoogle Scholar
  10. Clement AC (1962) Development ofHyanassa following removal of the D macromere at successive cleavage stages. J Exp Zool 149:193–216CrossRefGoogle Scholar
  11. Crampton HE (1896) Experimental studies on gastropod development. Wilhelm Roux Arch. Entwicklungsmech. Organismen 3:1–19CrossRefGoogle Scholar
  12. Dahlgren U (1916) The production of light by animals. J Frank Inst 181:659–696CrossRefGoogle Scholar
  13. Davidson EH (1986) Gene activity in early development. 3rd ed, Academic Press, Inc, Orlando p 32Google Scholar
  14. Davidson EH, Jacobs HT, Britten RJ (1983) Very short repcats and coordinate induction of genes. Nature 301:468–470PubMedCrossRefGoogle Scholar
  15. Enders HE (1909) A study of the life history and habits ofChaepterus variopedatus, Renier et Claparede. J Morphol 20:479–532CrossRefGoogle Scholar
  16. Fogel M, Schmitter RE, Hastings JW (1972) On the physical identity of scintillons: Bioluminescent particles inGonyaulax polyedra. J Cell Sci 11:305–317PubMedGoogle Scholar
  17. Freeman G, Reynolds GT, Walton A (1974) The development of light production in the annelidChaetopterus pergamentaceus Biol Bull 147:477Google Scholar
  18. Harvey EN (1940) “Living light”, Princeton University Press, Princeton, NJGoogle Scholar
  19. Hasama B (1941) Über die Biolumeneszenz beiChaetopterus variopedatus Renier im bioelektrischen sowie histologischen Bild. Zeit Wiss Zool 154:357–372Google Scholar
  20. Henry JJ (1986) The role of unequal cleavage and the polar lobe in the segregation of developmental potential during first cleavage in the embryo ofChaetopterus variopedatus. Wilhelm Roux’s Arch 195:103–116Google Scholar
  21. Henry JJ, Martindale MQ (1987) The organizing role of the D quadrant as revealed through the phenomenon of twinning in the polychaeteChaetopterus variopedatus. Wilhelm Roux’s Arch 196:499–510Google Scholar
  22. Henry J-P, Ninio M (1978) Control of the Ca++-triggered bioluminescence ofVeretillum cynomorium lumisomes. Biochem Biophys Acta 504:40–59PubMedCrossRefGoogle Scholar
  23. Joyeux-Laffuie J (1890) Etude monographique du Chétoptère (Chaetopterus variopedatus, Renier) suivie d’une revision des genre Chaetopterus. Arch Zool Exp Gén 8:245–360Google Scholar
  24. Krekel A (1921) Die Leuchtorgane vonChaetopterus variopedatus Clap. Zeit Wiss Zool 118:480–509Google Scholar
  25. Lillie FR (1906) Observations and experiments concerning the elementary phenomena of embryonic development ofChaetopterus. J Exp Zool 3:153–268CrossRefGoogle Scholar
  26. Mead AD (1897) The early development of marine annelids. J Morphol 13:227–326CrossRefGoogle Scholar
  27. Nicol JAC (1952a) Studies onChaetopterus variopedatus (Renier). I. The light-producing glands. J Mar Biol Assoc 30:417–431Google Scholar
  28. Nicol JAC (1952b) Studies onChaetopterus variopedatus (Renier). III. Factors affecting the light response. J Mar Biol Assoc 31:113–144CrossRefGoogle Scholar
  29. Novikoff AB (1938) Embryonic determination in the annelid,Sabellaria vulgaris. II. Transplantation of polar lobes and blastomeres as a test of their inducing capacities. Biol Bull 74:211–234Google Scholar
  30. Panceri P (1878) La luce e gli organi luminosi di alcuni annelidi. Atti R Accad [Napoli] 7:1–20Google Scholar
  31. Richardson KC, Jarrett L, Finke EH (1960) Embedding in Epon resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323PubMedGoogle Scholar
  32. Shimomura O, Johnson FH (1966) Partial purification and properties of theChaetopterus luminescence system. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, Princeton, NJ, pp 495–521Google Scholar
  33. Shimomura O, Johnson FH (1968)Chaetopterus photoprotein: crystallization and cofactor requirements for bioluminescence. Science 159:1239–1240PubMedGoogle Scholar
  34. Treadwell AL (1901) The cytogeny ofPodarke obscura Verrill. J Morphol 17:399–487CrossRefGoogle Scholar
  35. Trojan E (1913) Über Hautdrüsen desChaetopterus variopedatus Clap. Sitzb Akad Wiss [Wien] 122:565–596Google Scholar
  36. Trojan E (1914) Über die Bedeutung der “follicules bacillipares” Claparède’s bei “Chaetopterus variopedatus”. Proc IX Inter Zool Congr Monaco 1913:390–395Google Scholar
  37. Tyler A (1930) Experimental production of double embryos in annelids and mollusks J Exp Zool 57:347–407CrossRefGoogle Scholar
  38. van Dongen CAM (1976a) The development ofDentalium with special reference to the significance of the polar lobe. V, VI. Differentiation of the cell pattern in lobeless embryos ofDentalium vulgare (da Costa) during larval development. Proc K Ned Akad Wet [Ser C] 79:245–266Google Scholar
  39. van Dongen CAM (1976b) The development ofDentalium with special reference to the significance of the polar lobe. VII. Organogenesis and histogenesis in lobeless embryos ofDentalium vulgare (da Costa) as compared to normal development. Proc K Ned Akad Wet [Ser C] 79:454–465Google Scholar
  40. van Dongen CAM, Geilenkirchen WLM (1975) The development ofDentalium with special reference to the significance of the polar lobe. IV. Division chronology and development of the cell pattern inDentalium dentale after removal of the polar lobe at first cleavage. Proc K Ned Akad Wet [Ser C] 78:358–375Google Scholar
  41. Wilson EB (1883) Observations on the early developmental stages of some polychæous annelids. Stud Biol Lab Johns Hopkins University 2:271–299Google Scholar
  42. Wilson EB (1892) The cell lineage ofNereis. J Morphol 6:361–470CrossRefGoogle Scholar
  43. Wilson EB (1904) Experimental studies on germinal localization. I. The germ regions in the egg ofDentalium. J Exp Zool 1:1–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jonathan J. Henry
    • 1
  1. 1.Duke University Marine LaboratoryBeaufortUSA

Personalised recommendations