Human Evolution

, 20:55 | Cite as

Oligoelements and isotopic geochemistry: a multidisciplinary approach to the reconstruction of the paleodiet

  • Giorgi F. 
  • Bartoli F. 
  • Iacumin P. 
  • Mallegni F. 


Man's biological evolution, state of health and lifestyle are closely associated with dietary changes. The methods for acquiring useful information on the diet of our ancestors are an important aspect of anthropological research; hence it was retained interesting to apply the oligoelement and isotopic techniques in parallel on the same sample, in order to compare the two methodologies, construct a complete nutritional picture, and compare the analytical results with the ancient literary sources and with the findings from archaeological excavations.


evolution diet oligoelements stable isotopes 


  1. Ambrose, S.H. (1993), Isotopic analysis of paleodiets: methodological and interpretive considerations. In (M.K. Sandford, Ed.) Investigations of ancient human tissue. Chemical analysis in anthropology, 2.Google Scholar
  2. Ambrose, S.H. & De Niro, M.J. (1986a). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319, 321–324.CrossRefGoogle Scholar
  3. Bartoli, F. (1995). La paleodieta: un'ulteriore informazione sulle abitudini di vita dei gruppi umani antichi. In: Miscellanea in memoria di Giuliano Cremonesi a cura del Dipartimento di Scienze Archeologiche Università degli Studi di Pisa, ETS Ed.Google Scholar
  4. Bartoli, F. (1996). Paleodieta. I gruppi umani neolitici dell'Italia centro-meridionale. In: Forme e tempi della neolitizzazione in Italia meridionale e in Sicilia. Atti del Seminario Internazionale, Rossano 29 Aprile-2 Maggio 1994 a cura di V. Tinè, II, 499–505.Google Scholar
  5. Bisel, S.C. (1980). A pilot study in aspect of the human nutrition in the ancient eastern mediterranean, with particular attention to trace minerals in several populations from different time periods. Thesis for the degree of doctor in Philosophy, Smithsonian Institute, Washington.Google Scholar
  6. Brown, T.A., Nelson, D.S., Vogel, J.S. & Southton, J.R. (1988). Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177.Google Scholar
  7. Brown, A.B. (1973). Bone strontium content as a dietary indicator in human skeletal populations. Ph. D. Thesis, Department of Anthropology, University of Michigan, Ann. Arbor.Google Scholar
  8. Cerchiai, L. (1984). Pontecagnano. ACT XXIII, 583–540.Google Scholar
  9. Cheng, H.H., Bremmer, J.M. & Edwards, A.P. (1964). Variations of nitrogen-15 abundances in soils. Science 146, 1574–1575.Google Scholar
  10. Chisholm, B.S., Nelson, D.E. & Schwarcz, H.P. (1982). Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diet. Science 216,1131–2.Google Scholar
  11. Comar, C.L. & Wasserman, R.H. (1991). Strontium. In (C.L. Comar & F. Bronner Eds) Mineral Metabolism, 2: 523–72 New York.Google Scholar
  12. Correra, L. (1911). Necropoli di Pontecagnano. Symbolae Litterariae in Honorem J. De Petra, 201–215.Google Scholar
  13. Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149.CrossRefGoogle Scholar
  14. Cremonesi, G. (1978). Gli scavi della grotta n. 3 di Latronico. Nota preliminare. Atti della XX Riunione Scientifica in Basilicata 16–20 Ottobre 1976 a cura dell'I.I.P.P., 177–198.Google Scholar
  15. Cremonesi, G. (1989a). Il Neolitico e la prima età dei metalli nel Salento. Salento, porta d'Italia, Galatina ed.Google Scholar
  16. D'Agostino, B. (1964). Pontecagnano (Salerno). Esplorazione delle necropoli arcaiche. BA XLIX, 364–366.Google Scholar
  17. D'Agostino, B. (1974). Pontecagnano. AA.VV. Seconda Mostra della Preistoria e della Protostoria nel Salernitano, 87–104.Google Scholar
  18. D'Agostino, B. & Gastaldi, P. (1988). Pontecagnano II. La necropoli del Picentino 1. Le tombe della prima età del Ferro. AION (archeologia), quaderno 5.Google Scholar
  19. Deines, P. (1980). The isotopic composition of reduced organic carbon. In (A.P. Fritz & J.C. Fontes Eds) Handbook of Environmental Isotope Geochemistry, vol. 1, 329–406. The terrestrial environmental, Amsterdam, Elsevier.Google Scholar
  20. De Natale, S. (1992). Pontecagnano II. la necropoli di Sant'Antonio: Propr. ECI 2. Tombe della prima età del Ferro. AION (archeologia), quaderno 8.Google Scholar
  21. De Niro, M.J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317, 806–9.CrossRefGoogle Scholar
  22. De Niro, M.J. (1987). Stable isotopy and archaeology. Am. Scient. 75, 182–91.Google Scholar
  23. De Niro, M.J. & Epstein, S. (1978a). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 395–406.Google Scholar
  24. De Niro, M.J. & Epstein, S. (1981). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.CrossRefGoogle Scholar
  25. Equini Schneider, E. a cura di (1999). Elaiussa Sebaste I. Campagne di scavo 1995–1997: 13–53.Google Scholar
  26. Farquhar, G.D., O'Leary, M.H., Berry, J.A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plan Physiology 9, 121–137.CrossRefGoogle Scholar
  27. Fogel, M.L., Tuross, N. & Owsley, D. (1989). Nitrogen isotope tracers in human lactation in modern and archaeological populations. Annual report of the Director, Geophysical Laboratory, Carnegie Institution of Washington 1988–1989, 111–6.Google Scholar
  28. Fornaciari, G. (1982). Indagini paleonutrizionali su campioni di popolazioni antiche del bacino del Mediterraneo. Seminario di Scienze Antropologiche, suppl. Atti del Convegno “Uomo e Agricoltura”, 65–73.Google Scholar
  29. Gilbert, R.I. (1977). Application of trace element research to problems in archaeology. In (R.L. Blakely, Ed), Biocultural adaptation in prehistoric America. Athens: University of Georgia Press.Google Scholar
  30. Gilbert, R.I. Jr. (1985). Stress, palaeonutrition and trace elements. In (Gilbert & Mielke, Eds) The analysis of prehistoric diets, 339–357. Academic Press, Orlando.Google Scholar
  31. Grifoni Cremonesi, R. (1996). Torre Sabea, Trasano, Ripa Tetta, Santo Stefano. Forme e tempi della neolitizzazione in Italia meridionale e in Sicilia. Atti del Seminario Internazionale, Rossano 29 Aprile-2 Maggio 1994 a cura di V. Tinè I, 97–99, 155–213.Google Scholar
  32. Grifoni Cremonesi, R. (1999). Il neolitico antico nella fascia peninsulare adriatica. In: Settemila anni fa il primo pane, a cura di A. Pessina e G. Muscio. Museo friulano di storia naturale Dicembre 1998-Maggio 1999, 59–69.Google Scholar
  33. Grupe, G. (1988). Impact of choice samples on trace element data in excavated human skeleton. J. Arch. Sci. 15, 123–9.CrossRefGoogle Scholar
  34. Guilaine, J. & Cremonesi, G. (1987). L'habitat néolithique de Trasano (Matera, Basilicate). Prémiers resultats. Atti XXVI Riunione Scientifica a cura dell'I.I.P.P., 707–719.Google Scholar
  35. Guilaine, J., Cremonesi, G. & Bianco, S. (1991). Trasano (Matera) “MEFRA” 103, 350–62.Google Scholar
  36. Heaton, T.H.E. (1987). The 15N/14N ratios of plants in Southern Africa and Namibia. Oecologia 74, 236–246.CrossRefGoogle Scholar
  37. Heaton, T.H.E., Vogel, J.C., Chevallaire, G. & Collett, G. (1986). Climatic influence on the isotopic composition of bone nitrogen. Nature 322, 822–3.CrossRefGoogle Scholar
  38. Iacumin, P. (1996). Abondance isotopique (13C, 15N, 18O) de Mammiferes fossiles: implication pour les régimes alimentaires et les environments dans la zone méditerranéen et nilotique depuis 650.000 ans. Académie de Paris, Université Pierre et Marie Curie — Mémoires des Science de la Terre.Google Scholar
  39. Iacumin, P., Cominotto, D. & Longinelli, A. (1996). A stable isotope study of mammal skeletal remains of Pleistocene age, Arago cave, eastern Pyrenees, France. Evidence of taphonomic and diagenetic effects. Palaeogr., Palaeoclimatol., Palaeoecol. 126, 209–18.Google Scholar
  40. Iacumin, P., Nikolaev, V. & Ramigni, M. (2000). C and N stable isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: Herbivore physiologies and palaeoenvironmental reconstruction. Palaeogr., Palaeoclimatol., Palaeoecol. 163, 33–47.CrossRefGoogle Scholar
  41. Iacumin, P., Nikolaev, V., Genoni, L., Ramigni, M., Ryskov Ya, G. & Longinelli, A. (2003). Stable isotope analyses of mammal skeletal remains of Holocene age from European Russia: a way to trace dietary and environmental changes. Geobios 37, 37–47.CrossRefGoogle Scholar
  42. Lambert, J.B., Szpunar, C.B. & Buikstra, J.E. (1979). Chemical analysis of excavated human bone from Middle and Late Woodland sites. Archaeometry 21, 115–29.Google Scholar
  43. Macdowall, F.D.H. & Lowdon, J.A. (1989). Leaf carbon isotope ratio (δ13C) and cold hardiness of wheat in relation to growth temperature and moisture stress. Canadian Journal of Botany 67, 2828–2832.CrossRefGoogle Scholar
  44. Mallegni, F. (1978a). I resti scheletrici umani trovati nelle grotte n. 2 e n. 3 di Latronico. Atti della XX Riunione Scientifica in Basilicata 16–20 Ottobre 1976, a cura dell'I.I.P.P.: 215–217.Google Scholar
  45. Mallegni, F. & Usai, L. (1996). Ipotesi sul popolamento dell'Italia centro-meridionale nel Neolitico. Forme e tempi della neolitizzazione in Italia meridionale e in Sicilia. Atti del Seminario Internazionale, Rossano 29 Aprile-2 Maggio 1994 a cura di V. Tinè, t. II, 487–498.Google Scholar
  46. Mallegni, F., Bedini, E., Vitello, A., Paglialunga, L. & Bartoli, F. (1997). Su alcuni gruppi umani del territorio piemontese dal IV al XVIII secolo: aspetti di paleobiologia. In (L. Mercando & E. Micheletto Eds) Archeologia in Piemonte. Il Medioevo, 233–261.Google Scholar
  47. Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural15N abundance measurements. Nature 303, 685–687.CrossRefGoogle Scholar
  48. Mariotti, A., Pierre, D., Vedy, J.C., Burckert, S & Guillemot, J. (1980). The abundance of natural nitrogen 15 in the organic matter of soil along an altitudinal gradient (Chablais, Haute-Savoie, France). Catena 7, 293–300.Google Scholar
  49. Mooney, H.A., Troughton, J.H., Berry, J.A. (1977). Carbon isotope ratio measurements of succulent plants in Southern Africa. Oecologia 30, 295–305.CrossRefGoogle Scholar
  50. O'Leary, M.H. (1981). Carbon isotope fractionation in plants. Phytochemistry 20 (4), 553–567.CrossRefGoogle Scholar
  51. Orlando, M.A. (1996). Samari. Forme e tempi della neolitizzazione in Italia meridionale e in Sicilia. Atti del Seminario Internazionale, Rossano 29 Aprile-2 Maggio 1994 a cura di V. Tinè, t. I, 123–124, 228–231.Google Scholar
  52. Pejrani Baricco, L. (1997). La basilica del Salvatore e la cattedrale di Torino: considerazioni su uno scavo in corso. In (L. Mercando & E. Micheletto Eds) Archeologia in Piemonte. Il Medioevo, 133–149.Google Scholar
  53. Pitti, C. & Tozzi, C. (1976). Gli scavi nel villaggio neolitico di Catignano (Pescara). Nota preliminare. Riv. Sci. Preist. 31, 87 e segg.Google Scholar
  54. Price, T.D. & Kavanagh, M. (1982). Bone composition and the reconstruction of diet: examples from the Mid-Western United States. Midcontinental Journal of Archaeology 7, 61–79.Google Scholar
  55. Schoeninger, M.J. (1979). Die and status in Chalcatzingo: some empirical and technical aspects of strontium analyis. Am. J. Phys. Anthrop. 58, 37–52.CrossRefGoogle Scholar
  56. Schoeninger, M.J. (1982). Diet and evolution of modern human form in the Middle East. In: Am. J. Phys. Anthrop. 58, 37–52.CrossRefGoogle Scholar
  57. Schoeninger, M.J., De Niro, M.J. & Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220, 1381–3.Google Scholar
  58. Schoereder, H.A. (1973). Trace elements and man. Devin, Adair, Old Greenwich.Google Scholar
  59. Schoereder, H.A. (1984). The trace element and man: some positive and negative aspects. Old Greenwich.Google Scholar
  60. Schwarcz, H.P., Melbye, J., Katzenberg, M.A. & Knyf, M. (1985). Stable isotopes in human skeletons of southern Ontario: reconstructing paleodiet. J. Arch. Sci. 12, 187–206.CrossRefGoogle Scholar
  61. Schwarcz, H.P., Schoeninger, M.J. (1991). Stable isotope analyses in human nutritional ecology. Yearb. Phys. Anthrop. 34, 283–321.CrossRefGoogle Scholar
  62. Shearer, G., Kohl, D.H., Virginia, R.A., Bryan, B.A., Skeeters, J.L., Nilsen, E.T., Sharifi, M.R., Rundel, P.W. (1983). Estimates of N2-fixation from variation in the natural abundance of15N in Sonoran Desert ecosystems. Oecologia 56, 365–373.CrossRefGoogle Scholar
  63. Sillen, A. & Kavanagh, M. (1982). Strontium and paleodietary research: a review. Yearb. Phys. Anthrop. 25, 67–90.CrossRefGoogle Scholar
  64. Smith, B.N. (1972). Natural abundance of the stable isotopes of carbon in biological system. Bio Science 22, 226–31.Google Scholar
  65. Smith, B.N. & Epstein, S. (1971). Two categories of13C/12C ratios for higher plants. Plant Physiology 47, 380–384.Google Scholar
  66. Steele, K.W. & Daniel, R.M. (1978). Fractionation of nitrogen isotopes by animals: a further complication to the use of variations in the natural abundance of15N for tracer studies. J. Agricultural Sci. Cambridge 90, 7–9.CrossRefGoogle Scholar
  67. Stevenson, F.J. (1986). Cycles of Soil. Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. New York, Wiley Interscience.Google Scholar
  68. Stuiver, M., Brazunias, T.F. (1987). Tree cellulose13C/12C isotope ratios and climate change. Nature 328, 58–60.CrossRefGoogle Scholar
  69. Tieszen, L.L. (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology. J. Arch. Sci. 18, 227–48.CrossRefGoogle Scholar
  70. Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. & Slae, N.A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues. Implications for δ13C analysis of diet. Oecologia 57, 32–7.CrossRefGoogle Scholar
  71. Troughton, J.H., Wells, P.V., Mooney, H.A. (1974). Photosynthetic mechanism and paleoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants. Science 185, 610–612.Google Scholar
  72. Turekian, K.K. & Kulp, J.L. (1956). Strontium content of human bones. Science 124, 405–407.Google Scholar
  73. Underwood, E.J. (1977). Trace elements in Human and animal nutrition. Academic Press, New York.Google Scholar
  74. Wada, E., Kadonaga, T. & Matsuo, S. (1975).15N abundance in nitrigen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J. 9, 139–48. Sci. 26, 1159–1170.Google Scholar

Copyright information

© International Institute for the Study of Man 2005

Authors and Affiliations

  • Giorgi F. 
    • 1
  • Bartoli F. 
    • 1
  • Iacumin P. 
    • 2
  • Mallegni F. 
    • 1
  1. 1.Dipartimento di Scienze ArcheologicheUniversità degli Studi di PisaPisa
  2. 2.Departimento di Scienze della Terra Parco Area delle ScienzeUniversità degli Studi di ParmaParmaItaly

Personalised recommendations