Biotechnology Techniques

, Volume 6, Issue 2, pp 143–148 | Cite as

Comparison of chromium adsorption to starved and fresh subsurface bacterial consortium

  • Sungho Kong
  • Donald L. Johnstone
  • David R. Yonge
  • James N. Petersen
  • Thomas M. Brouns


The adsorption of chromium (Cr+6) to a denitrifying consortium was investigated for starved and fresh cells under three pH values (pH 6.0, 7.5 and 9.0). Cells starved 50 days adsorbed approximately 10–15% more Cr+6 than fresh (0 day) cells at those three pH conditions.


Adsorption Isotherm Lester Fresh Cell Solid Retention Time Simulated Groundwater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association (1989).Standard Methods for the Examination of Water and Wastewater, 17th ed.Google Scholar
  2. Beloin, R.M., Sinclair, J.L., and Ghiorse, W. C. (1988).Microb. Ecol. 16:85–97CrossRefGoogle Scholar
  3. Brouns, T. M., Koegler, S., Heath, W., Fredrickson, J., Stensel, H., Johnstone, D., and Donaldson, T. (1990).FY 1989, Status Report Battelle, PNL-7920/UC-702.Google Scholar
  4. Brown, M. J. and Lester, J. N. (1982).Water Res. 16:1549–1560.CrossRefGoogle Scholar
  5. Fredrickson, J.K., Garland, T. R., Hicks, R. J., Thomas, J. M., Li, W., and McFadden, K. M. (1989).Geomicrobial J. 7:53–66.CrossRefGoogle Scholar
  6. Hutchins, S. R., Davidson, M. S., Brierley, J. A., and Brierley, C. L. (1986).Ann. Rev. Microbiol. 40:311–336.CrossRefGoogle Scholar
  7. Kong, S. (1988). Toxicity of Toluene and o-Xylene toPseudomonas testosteroni in the Starvation/Survival Mode.Master Thesis. Washington State University, Pullman, W.A.Google Scholar
  8. Kutsal, T. and Sag, Y. (1989a).Biotechnol. Lett. 11, 141–144.CrossRefGoogle Scholar
  9. Kutsal, T. and Sag, Y. (1989b).Biotechnol. Lett. 11, 145–148.CrossRefGoogle Scholar
  10. Morita, R.Y. (1988).Can. J. Microbiol. 34:436–441.CrossRefGoogle Scholar
  11. Stoveland, S. and Lester, J. N. (1980).Sci. Total Envir. 16, 37–54.CrossRefGoogle Scholar
  12. Tobin, J. M., Cooper, D. G., and Neufeld, R. J. (1988).Biotech and Bioeng. 31:282–286.CrossRefGoogle Scholar
  13. Tsezos, M., Baird, M. H. L., and Shemilt, L. W. (1986).The Chem. Eng. J. 32:29–38.CrossRefGoogle Scholar
  14. Tsezos, M., Baird, M. H. I., and Shemilt, L. W. (1987).Hydrometallurgy. 17:357–368.CrossRefGoogle Scholar
  15. Tsezos, M. and Bell, J. P. (1989).Water Res. 23:561–568.CrossRefGoogle Scholar
  16. Uloth, V. C. and Mavinic, D. S. (1977).J. Envir. Engng. Div. Am. Soc. Civ. Engrs. 103, EE4, 647–661.Google Scholar

Copyright information

© Science & Technology Letters 1992

Authors and Affiliations

  • Sungho Kong
    • 1
  • Donald L. Johnstone
    • 1
  • David R. Yonge
    • 1
  • James N. Petersen
    • 2
  • Thomas M. Brouns
    • 3
  1. 1.Civil and Environmental Engineering DepartmentWashington State UniversityPullmanUSA
  2. 2.Chemical Engineering DepartmentWashington State UniversityPullmanUSA
  3. 3.Battelle Pacific Northwest LaboratoriesRichlandUSA

Personalised recommendations