Advertisement

Applied Mathematics and Mechanics

, Volume 24, Issue 3, pp 307–317 | Cite as

Determination of creep parameters from indentation creep experiments

  • Yue Zhu-feng
  • Wan Jian-song
  • Lü Zhen-zhou
Article

Abstract

The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in terms of indentation rates at constant loads. Emphasis is placed on the relationships between the steady creep behavior of indentation systems and the creep property of the indented materials. The role of indenter geometry, size effects and macroscopic constraints is explicitly considered on indentation creep experiments. The influence of macroscopic constraints from the material systems becomes important when the size of the indenter is of the same order of magnitude as the size of the testing material. Two methods have been presented to assess the creep property of the indented material from the indentation experimental results on the single-phase-material and two-phase-material systems. The results contribute to a better mechanical understanding and extending the application of indentation creep testing.

Key words

indentation creep testing finite element creep stress analysis determination of creep parameters single-phase-material system two-phase-material system 

Chinese Library Classification

TG148 

2000 MR Subject Classification

74D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Webster G A, Ainsworth R A.High Temperature Component Life Assessment[M]. London: Chapman & Hall, 1994.Google Scholar
  2. [2]
    Cadek J.Creep in Metallic Materials[M]. Amsterdam: Elsevier, 1988.Google Scholar
  3. [3]
    Nabarro F R N, de Villiers H L.The Physics of Creep[M]. London: Taylor and Francis, 1995.Google Scholar
  4. [4]
    Evans B, Indentation testing[J].J Geophys Res, 1984,89(10):4213–4222.Google Scholar
  5. [5]
    Li W B, Henshall J L, Hooper R M,et al. The mechanism of Indentation creep[J].Acta Metall Mater, 1991,39(8):3099–3109.Google Scholar
  6. [6]
    Pandorf R, Broeckmann C, Berns H. Indentationskriechen[J].MP Materialprüfung, 1999,41(2):294–300.Google Scholar
  7. [7]
    Li J C M, Creep of Sn−Pb eutectic alloy[A]. In: J C Earthman, F A Mohamed Eds.Proceedings of the seventh international conference on creep and fracture of engineering materials and structures: The Minerals, Metals & Materials Society[C]. Warrendale, 1997, 109–117.Google Scholar
  8. [8]
    Lucas B N, Oliver W C. Indentation power-law creep of high-purity indium[J].Metallurgical and Materials Transactions, 1999,30A(3):601–610.Google Scholar
  9. [9]
    Becker A A, Hyde T H, Xia L. Numerical analysis of creep in components[J].J Strain Analysis, 1994,29(3):27–34.Google Scholar
  10. [10]
    Hyde T H, Yehia K A, Becker A A. Application of the reference stress method for interpreting impression creep test data[J].Materials at High Temperatures, 1995,13(3):133–137.Google Scholar
  11. [11]
    Dieter G E.Mechanical Metallurgy[M]. New York: McGraw-Hill Book Company, 1988.Google Scholar
  12. [12]
    Hibbit, Karlsson, Sorensen. ABAQUS User's Manual[M]. Version 5.6, 1988.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 2003

Authors and Affiliations

  • Yue Zhu-feng
    • 1
    • 2
  • Wan Jian-song
    • 1
  • Lü Zhen-zhou
    • 1
  1. 1.Department of Applied MechanicsNorthwestern Polytechnical UniversityXi'anPR China
  2. 2.Institute für WerkstoffeRuhr-Universität BochumBochumGermany

Personalised recommendations