Human Evolution

, Volume 12, Issue 4, pp 253–267 | Cite as

Life conditions of a roman imperial age population: Occupational stress markers and working activities inLucus Feroniae (Rome, 1st–2nd cent. AD)

  • A. Sperduti
Article

Abstract

In ancient populations studies, investigation on activity-induced pathology performed by means of an integrated and epidemiological approach can provide useful evidence about physical activities, age of occupancy, sexual differentiation, social stratification and working tasks division of past human groups. The analysis of occupational stress of the skeletal sample coming from the poor necropolis of Lucus Feroniae, a rural town of the Roman Imperial Age, was carried out on: degenerative disease of joints and vertebral bodies, traumas, hypertrophic changes at sites of muscles and ligament insertion, presence of anatomical variants caused by postural habits or body movements.

The results as a whole seem to indicate that the population, likely representative of a low social group (potentially slaves), was precociously and actively employed in heavy manual work activities. These may have included farming tasks demanding lifting, heavy loads transportation and long-distance walking on rough grounds.

Key words

Roman Imperial Age occupational stress markers osteoarthritis enthesopathies traumas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acsadi, G. & Nemeskeri, J., 1970.History of Human Life Span and Mortality. Akademiai Kiado. Budapest.Google Scholar
  2. Alciati, G., Fedeli, M. & Pesce Delfino V., 1987.La malattia dalla preistoria all’età antica. Laterza, Bari.Google Scholar
  3. Angel, L.J., 1964.The reaction area of the femural neck. Clin. Orthop. 32: 130–142.Google Scholar
  4. Angel, L.J., 1966.Early skeletons from Tranquility, California. Smithsonian Contributions to Anthropology. 2 (no 1). Washington.Google Scholar
  5. Angel, L.J., 1974.Patterns of fractures from Neolithic to modern times. Anthrop. Kozl., 18: 9–18.Google Scholar
  6. Angel, L.J., 1979.Osteoarthritis in prehistoric Turkey and medieval Byzantium. Henry Ford Hosp. Med. J., 27: 38–43.Google Scholar
  7. Angel, L.J., 1982.Osteoarthritis and occupation (ancient and modern). II Anthrop. Congress of Ales Hrldicka. pp. 443–446. Universitatis Carolina Pragensis.Google Scholar
  8. Belkin, S.C., 1983.Fratture da stress negli atleti. In (H.H. Banks ed). Lesioni da sport, pp. 54–62. Il Pensiero Scientifico Editore, Roma.Google Scholar
  9. Bisel, S., 1991.The human skeleton of herculaneum. Int. J. Anthropol, 6: 1–20.Google Scholar
  10. Boccaccino, C., Borgard, P., Buillot, J., Buchet, L., Buisson-Catil, D. & Vatteoni, S., 1991.Une nécropole de l’Antiquité tardive à Vaison-la-Romaine. Rimbaud S.A., Cavaillon.Google Scholar
  11. Bonaiuti, D., Combi, F., Garribaldi, M., Meregaglia, D., Cantù, G. & Occhipinti, E., 1991.Alterazioni degenerative a carico dell’articolazione coxofemorale da cause professionali: I descrizione radiologica di una popolazione di controllo. Med. Lav., 82: 341–346.Google Scholar
  12. Borgognini Tarli S.M. & La Gioia, C., 1977.Studio antropologico di un gruppo di scheletri di età romana (I a.C-I d.C.) rinvenuti nella necropoli di Collelongo (L’Aquila, Abruzzo). Atti Soc. Tosc. Sc. Nat. Men., 84: 193–226.Google Scholar
  13. Borgognini Tarli, S.M. & Repetto E., 1986a.Skeletal indicators of subsistence patterns and activity régime in the Mesolithic sample from grotta dell’Uzzo (Trapani, Sicily): a case study. Hum. Evol., 1: 331–352.CrossRefGoogle Scholar
  14. Borgognini Tarli, S.M. & Repetto, E., 1986b.Methodological considerations on the study of sexual dimorphism in past human populations. Hum. Evol., 1: 51–66.CrossRefGoogle Scholar
  15. Bridges, P.S., 1991.Degenerative joint disease in Hunter—gatherers and agriculturalists from the Southeastern United States. Am. J. Phys. Anthropol., 85: 379–391.CrossRefGoogle Scholar
  16. Buikstra, J.E. & Mielke, J.H., 1985. Demography, Diet and Health. In (R.I. Gilbert and J.H. Mielke eds.). The analysis of prehistoric diets; pp. 359–422. Academic Press, Orlando.Google Scholar
  17. Burrell, L.L., Maas, M.C. & Van Gerven, D.P., 1986.Patterns of long-bone fracture in two Nubian cementeries. Hum. Evol., 1:495–506.CrossRefGoogle Scholar
  18. Busby, J., Tobin, J., Ettinger, W., Roadarmel, K. & Plato C.C., 1991.A longitudinal study of osteoarthritis of the hand: the effect of age. Ann. Hum. Biol., 18: 417–424.CrossRefGoogle Scholar
  19. Chapman, F.H., 1972.Vertebral osteophytosis in prehistoric populations of Central and Southern Mexico. Am. J. Phys. Anthropol., 36: 31–38.CrossRefGoogle Scholar
  20. Chenorkian, R., Dutour, O., Bracco, J.-P. & Defleur, A., 1990.Pour une archéologie du geste. Travaux du Lapmo: 147–151.Google Scholar
  21. Claussen, B.F., 1982.Chronic hypertrophy of the ulna in the professional rodeo cowboy. Clin. Orthop., 164: 45–47.Google Scholar
  22. Clement, D.B., Touton, J.E., & Smart, G.W., 1984.Achilles tendinitis and peritendinitis: Etiology and treatment. Am. J. Sports Med., 12: 179–184.Google Scholar
  23. Cohen, M.N., 1989.Health and the Rise of Civilization. Yale University Press, New Haven.Google Scholar
  24. Cunha, E., 1992.Enthesopaties on a medieval urban series from Coimbra (Portugal). Abstracts of VIIIth Congress of the European Anthropological Association. Madrid.Google Scholar
  25. Dutour, O., 1986.Enthesopaties (lesions of muscular insertions) as indicators of the activities of Neolithic Saharan population. Am. J. Phys. Anthropol. 71: 221–224.CrossRefGoogle Scholar
  26. Falch, J.A., 1983.Epidemiology of fractures or the distal forearm in Oslo, Norway. Acta Orthop. Scand., 54: 291–295.CrossRefGoogle Scholar
  27. Farwell, D.E. & Molleson, T., 1993.Excavation at Poundbury 1966–80. Volume II: The Cemeteries. Dorset Nat. Hist. Archaeol. Soc. Monograph Series no 11. Jo Draper, Dorset.Google Scholar
  28. Felson, D.T., 1988.Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev., 10: 1–28.Google Scholar
  29. Ferembach, D., Schwidetzky, I. & Stloukal, M., 1979.Raccomandazioni per la determinazione dell’età e del sesso sullo scheletro. Riv. Antropol., 60: 5–51.Google Scholar
  30. Finnegan, M., 1978.A guide to osteological analysis. Kansas State University.Google Scholar
  31. France, D.L., 1988.Osteometry at muscle origin and insertion in sex determination. Am. J. Phys. Anthropol., 76: 515–526.CrossRefGoogle Scholar
  32. Frayer, D.W., 1988.Auditory exostoses and evidence for fishing at Vlasac. Curr. Anthropol., 29: 346–349.CrossRefGoogle Scholar
  33. Galera, V., & Garralda, M.D., 1990.Enthesopathies in a Spanish medieval population. Anthropological, epidemiological and ethno-historical aspects. Abstracts of VIIth Congress of the European Anthropological Association, p. 18. Wroclaw.Google Scholar
  34. Garnsey, P., 1988.Famine and food supply in the Graeco-Roman world. Cambridge University Press, Cambridge.Google Scholar
  35. Genety, J., 1972.La maladie des insertions des tendons. Cah. Med. Lyon, 48: 4685–4690.Google Scholar
  36. Giardina, A. & Schiavone, A., 1981.Società romana e produzione schiavistica. Bari.Google Scholar
  37. Griffin, M.C. & Larsen, C.S., 1985.Patterns in osteoarthritis: a case study from the prehistoric southeastern U.S. Atlantic coast. Am. J. Phys. Anthropol., 78: 232.Google Scholar
  38. Hartnady, P., 1991.An activity-induced pathology from the Lower Pecos region of Texas. Am. J. Phys. Anthropol., Suppl. 12: 90.Google Scholar
  39. Hawkey, D.E., & Street, S.R., 1992.Activity-induced stress markers in prehistoric human remains from the eastern Aleutian Islands. Am. J. Phys. Anthropol., Suppl. 14: 89.Google Scholar
  40. Hodges, D.C., 1991.Temporomandibular joint ostearthritis in a British skeletal population. Am. J. Phys. Anthropol., 85: 367–377.CrossRefGoogle Scholar
  41. Iscan, M.Y. & Loth, S.R., 1986a.Determination of age from the sternal rib in white males: a test of the phase method. J. For. Sci, 31: 122–132.Google Scholar
  42. Iscan, M.Y., & Loth, S.R., 1986b.Determination of age from the sternal rib in white females: a test of the phase method. J. For. Sci. 31: 990–999.Google Scholar
  43. Jòzsa, L., Pap, I. & Fòthi, E., 1991.Enthesopathies (insertion tendopathies) as indicators of overuse of tendons and muscles in ancient Hungarian populations. Annals Hist. Nat. Mus. Nat. Hung., 83: 269–276.Google Scholar
  44. Jurmain, R.D., 1977.Stress and etiology of osteoarthritis. Am. J. Phys. Anthropol., 46: 353–366.CrossRefGoogle Scholar
  45. Jurmain, R.D., 1978.Paleoepidemiology of Degenerative joint disease. MCV Quarterly, 14: 45–56.Google Scholar
  46. Jurmain, R.D., 1980.The pattern of involvement of appendicular degenerative joint disease. Am. J. Phys. Anthropol., 53: 143–150.CrossRefGoogle Scholar
  47. Jurmain, R.D., 1990.Paleoepidemiology of a central California prehistoric population from CA-ALA-329: II. Degenerative disease. Am. J. Phys. Anthropol., 83: 83–94.CrossRefGoogle Scholar
  48. Jurmain, R.D., 1991.Degenerative changes in peripheral joints as indicators of mechanical stress: opportunities and limitations. Int. J. Osteoarchaeol., 1: 247–252.CrossRefGoogle Scholar
  49. Keefer, C.S. & Myers, W.K., 1934.The incidence and pathogenesis of degenerative arthritis. J. Am. Med. Ass., 102: 811–813.Google Scholar
  50. Kennedy, K.A.R., 1983.Morphological variations in ulnar supinator crests and fossae as identifying markers of occupational stress. J. For. Sci., 28: 871–876.Google Scholar
  51. Kennedy, K.A.R., 1989.Skeletal markers of occupational stress. In (M.Y. Iscan and K.A.R. Kennedy, eds.). Reconstruction of life from the skeleton: 129–160. A.L. Liss, New York.Google Scholar
  52. Krogman, W.M., & Iscan, M.Y., 1986.The human skeleton in forensic medicine. C.C. Thomas, Springfield.Google Scholar
  53. Lai, P. & Lovell N.C., 1992.Skeletal markers of occupational stress in the fur trade; a case study from a Hudson’s Bay Company Fur Trade Post. Int. J. Osteoarchaeol., 2: 221–234.CrossRefGoogle Scholar
  54. Lehaman, W.L., 1984.Overuse syndromes in runners. Am. Family Phys., 29: 157–161.Google Scholar
  55. Lovejoy, C.O., 1985.Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol., 68: 47–56.CrossRefGoogle Scholar
  56. Lovejoy, C.O., Burstein, A.H. & Heiple, K.G., 1976.The biomechanical analysis of bone strength: a method and its application to platyctemia. Am. J. Phys. Anthropol., 44: 489–506.CrossRefGoogle Scholar
  57. Lovejoy, C.O. & Heiple, K.G., 1981.The analysis of fractures in skeletal populations with an example from the Libben site, Ottawa County, Ohio. Am. J. Phys. Anthropol., 55: 529–541.CrossRefGoogle Scholar
  58. Lovejoy, C.O., Meindl, R.S., Pryzbeck, T.R. & Mensforth, R.P., 1985.Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am. J. Phys. Anthropol., 68: 15–28.CrossRefGoogle Scholar
  59. Macchiarelli, R., Salvadei, L., & Dazzi, M., 1981.Paleotraumatologia cranio-cerebrale nella comunità protostorica di Alfedena (VI–V sec. a.C., area medio-adriatica). Antrop. Contemp. 4: 239–243.Google Scholar
  60. Mann, G.E., 1993.Myositis ossificant in Medieval London. Int. J. Osteoarch., 3: 223–226.CrossRefGoogle Scholar
  61. Mann, R.W., & Hunt, D.R., 1991.Age, sex, and ethnic correlations in femural trochanteric fossa spicules. Am. J. Phys. Anthropol., suppl. 12: 124.Google Scholar
  62. Manzi, G., Censi, L., Sperduti, A. & Passarello, P., 1989.Lanee di Harris e ipoplasia dello smalto nei resti scheletrici delle popolazioni umane di Isola Sacra e Lucus Feroniae (Roma, I–III secolo d.C.). Riv. Antrop., 67: 129–148.Google Scholar
  63. Manzi, G., Sperduti, A., Salomone, F. & Passarello, P., 1991.Indicatori scheletrici di dimorfismo sessuale e lateralizzazione nella popolazione rurale di Lucus Feroniae (Roma I–III secolo d.C.). Abstracts of IX Congresso degli Antropologi Italiani, Bari.Google Scholar
  64. Manzi, G., Sperduti, A. & Passarello, P., 1991.Behavior-induced auditory exostoses in imperial roman society: evidence from coeval urban and rural communities. Am. J. Phys. Anthropol., 85: 253–260.CrossRefGoogle Scholar
  65. Martin, D.L., Armelagos, G.J. & King, J.R., 1979.Degenerative joint disease of long bones in Dickson Mounds. Henry Ford Hosp. Med. J., 27: 60–63.Google Scholar
  66. Mensforth, R.P., & Latimer, B.M., 1989.Hamman-Todd collection ageing studies: osteoporosis fracture syndrome. Am. J. Phys. Anthropol., 80: 461–479.CrossRefGoogle Scholar
  67. Merbs, C.F., 1983.Pattern of activity induced pathology in a Canadian Inuit population. Arch. Survey of Canada (Nat. Mus. of Man): 119.Google Scholar
  68. Merbs, C.F., 1989.Trauma. in (M.Y. Iscan and K.A.R. Kennedy, eds.). Reconstruction of life from the skeleton, pp. 161–189. A.L. Liss, New York.Google Scholar
  69. Nachemson, A., 1966.The load on lumbar disks in different positions of the body. Clin. Orthop, 45: 107–122.Google Scholar
  70. Nathan, H., 1962.Osteophytes of the vertebral column. J. Bone Joint Surg., 44 (Am): 243–266.Google Scholar
  71. Nicoll, E.A., 1949.Fractures of the dorso-lumbar spine. J. Bone Joint Surg., 31 (Brit): 376–394.Google Scholar
  72. Orava, S., Puranen, J., & Ala-ketola, L., 1978.Stress fractures caused by physical exercise. Acta Orthop. Scand., 49: 19–27.Google Scholar
  73. Palfi, G., 1992.Maladies, environment et activities: traces sur l’os humain ancien. Prehist. Anthropol. Medit., 61–72.Google Scholar
  74. Patterson, J.R., 1987.Crisis: what crisis? Rural change and urban development in Imperial appennine Italy. Papers Brit. School Rome, 55: 115–146.Google Scholar
  75. Petrone, P.P., 1993.Schiavitù, stress da attività lavorativa, malnutrizione: condizioni socio-culturali quali principali cause di morbilità e mortalità in popolazioni d’età imperiale dell’area flegrea (Napoli, Campania). Abstracts of X Congresso degli Antropologi Italiani, p. 18, Pisa.Google Scholar
  76. Pfeiffer, S., 1980.Age changes in the external dimensions of adult bone. Am. J. Phys. Anthropol., 52: 529–532.CrossRefGoogle Scholar
  77. Radin, E.L., Paul, I.L. & Rose, R.M., 1972.Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet, 4: 519–522.CrossRefGoogle Scholar
  78. Robb, J.E., 1993.Indicatori scheletrici e dentari di attività durante l’età dei metalli. Abstracts of X Congresso degli Antropologi Italiani, p. 17. Pisa.Google Scholar
  79. Rogers, J. & Waldron, T., 1985.The enthesis in paleopathology. Am. J. Phys. Anthropol., 78: 292.Google Scholar
  80. Ruff, C., 1987.Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labour. J. Hum. Evol., 16: 391–416.CrossRefGoogle Scholar
  81. Ruff, C.B., Larsen, C.S. & Hayes, W.C., 1984.Structural changes in the femur with the transition to agriculture on the Georgia coast. Am. J. Phys. Anthropol. 64: 125–136.CrossRefGoogle Scholar
  82. Sciulli, P.W. & Gramly, R.M., 1989.Analysis of the Ft. Laurens, Ohio, Skeletal sample. Am. J. Phys. Anthropol., 80: 11–24.CrossRefGoogle Scholar
  83. Shaibani, A., Workman, R. & Rothschild, B., 1991.Enthesitis as a disease manifestation. Am. J. Phys. Anthropol. Suppl. 12: 159–160.Google Scholar
  84. Slowik, A.J., 1969.Stress fractures of the first metatarsal. J. Am. Pediatr. Ass., 59/9: 333–335.Google Scholar
  85. Sokoloff, L., Mickelson, O., Silverstein, E., Jay, G.E. & Yamamoto R.S., 1960.Experimental obesity and osteoarthritis. Am. J. Physiol., 198: 765–770.Google Scholar
  86. Solgaard, S. & Petersen, V.S., 1985.Epidemiology of distal radius fractures. Acta Orthop. Scand., 56: 391–393.CrossRefGoogle Scholar
  87. Sperduti, A., Manzi, G. & Passarello, P., 1992.Paleobiology of a rural community from the roman Imperial age: Lucus Feroniae. Abstracts of VIIIth Congress of the European Anthropological Association, Madrid.Google Scholar
  88. Steinbock, R.T., 1976. Paleopathological diagnosis and interpretation. C.C. Thomas, Springfield.Google Scholar
  89. Stirland, A., 1984.Possible correlation between os acromiale and occupation in the burial from the Mary Rose. In Vth European Meeting Paleopathology Association, pp. 327–334. Siena Univers. Press, Siena.Google Scholar
  90. Trotter, M., 1937.Accessory sacroiliac articulation. Am. J. Phys. Anthropol. 22: 247–261.CrossRefGoogle Scholar
  91. Van Wagenen K.M., 1992.An assessment of the relationship of skeletal fractures with mortuary population size, time period and geographic region. Am. J. Phys. Anthropol. suppl. 14: 166.Google Scholar
  92. Vingard, E., Alfredsson, L., Goldie, I. & Hogstedt, C. 1991.Occupation and osteoarthrosis of the hip and knee: a register-based cohort study. Int. J. Epidemiol., 20: 1025–1031.Google Scholar
  93. Waldron, T., 1985.Occupation and osteoarthritis: evidence from some 18th/19th century skeletons. Am. J. Phys. Anthropol., 78: 319.Google Scholar
  94. Walker, P.L., 1989.Cranial injuries as evidence of violence in prehistoric southern California. Am. J. Phys. Anthropol., 80: 313–323.CrossRefGoogle Scholar
  95. Walker, P.L., & Hollimon, S.E., 1989.Changes in osteoarthritis associated with the development of a maritime economy among southern California Indians. Int. J. Anthropol., 4: 171–183.Google Scholar
  96. Zivanovic, S., 1984.The changing pattern of fractures of bones in medieval serbian population, pp. 379–385. Siena University Press, Siena.Google Scholar

Copyright information

© International Institute for the Study of Man 1997

Authors and Affiliations

  • A. Sperduti
    • 1
    • 2
  1. 1.Dip. Biologia Animale e dell’UomoUniversità “La Sapienza” di RomaRomaItaly
  2. 2.Soprintendenza Speciale al Museo Nazionale Preistorico Etnografico“L. Pigorini” Sez. di AntropologiaRomaItaly

Personalised recommendations