Applied Mathematics and Mechanics

, Volume 23, Issue 10, pp 1207–1214 | Cite as

Convergence of simplified and stabilized mixed element formats based on bubble function for the stokes problem

  • Luo Zhen-dong
  • Zhu Jiang
Article
  • 37 Downloads

Abstract

Two simplified and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i. e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.

Key words

Stokes problem stabilized format mixed element format error analysis 

CLC number

O241.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J].Numer Math, 1988,53 (2):225–235.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Fix G J, Gunzburger M D, Nicolaides R A. On mixed finite element methods for the first elliptic systems[J].Numer Math, 1981,37(1):29–48.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Neittanmäki P, Picard R. On finite element approximation of the gradient for the solution of Poisson equation[J].Numer Math, 1981,37(3):333–337.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Pehlivanov A I, Carey G F. Error estimates for least-squares finite elements[J].M2AN, 1994,28 (5):499–516.MATHMathSciNetGoogle Scholar
  5. [5]
    Russo A. A posteriori error estimators for the Stokes problems[J].Appl Math Lett, 1995,8(1): 1–4.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the staionary Navier-Stokes equations[J].Math Comp, 1993,60(202):531–543.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    ZHOU Tian-xiao. Dual composition finite element methods and theory based on saddle point problems [J].Science in China, Series (E), 1997,27(1):75–87. (in Chinese).Google Scholar
  8. [8]
    Girault V, Raviart P A.Finite Element Approximations of the Navier-Stokes Equations, Theorem and Algorithms[M]. Series in Computational Mathematics, Springer-Verlag, 1986:1–210Google Scholar
  9. [9]
    LUO Zhen-dong,Theory Bases and Applications of Finite Element and Mixed Finite Element Methods [M]. Jinan: Shandong Educational Press, 1996, 32–144. (in Chinese)Google Scholar
  10. [10]
    Brezzi F, Fortin M.Mixed and Hybrid Finite Element Methods[M]. New York, Berlin, Heidelberg: Springer-Verlag, 1991,1–190.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Luo Zhen-dong
    • 1
    • 2
  • Zhu Jiang
    • 2
  1. 1.Department of MathematicsCapital Normal UniversityBeijingP R China
  2. 2.ICCES, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingP R China

Personalised recommendations