Skip to main content
Log in

A stable stieltjes technique for computing orthogonal polynomials and jacobi matrices associated with a class of singular measures

  • Published:
Constructive Approximation Aims and scope

Abstract

A recursive technique for the determination of Jacobi matrices associated with multifractal measures generated by Iterated Function Systems is described. This technique allows for the stable determination of large-rank matrices, a task for which the conventional approach, classical polynomial sampling, is proven here to be severely ill-conditioned.

Application to the integration of smooth functions is presented in a physical example, and relevance of this new technique to the study of the asymptotic properties of orthogonal polynomials of singular measures is discussed. Further applications to the study of almost periodic quantum systems are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer (1965): The Classical Moment Problem. New York: Hafner.

    Google Scholar 

  2. J. A. Shohat, J. D. Tamarkin (1963): The Problem of Moments. Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

  3. W. Gautschi (1990):Computational aspects of orthogonal polynomials. In: Orthogonal Polynomials (P. Nevai, ed.), Dordrecht, NL: Kluwer. pp. 181–216.

    Google Scholar 

  4. R. A. Sack, A. F. Donovan (1969): An Algorithm for Gaussian Quadrature Given Generalized Moments. Dept. of Maths Publ., University of Salford, England.

    Google Scholar 

  5. G. H. Golub, J. H. Welsch (1969):Calculation of Gauss quadrature rules. Math. Comput.,23: 221–230.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Gautschi (1970):On the construction of Gaussian quadrature rules from modified moments. Math. Comput.,24: 245–260.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bellissard, D. Bessis, P. Moussa (1982):Chaotic states of almost periodic Schrödinger operators. Phys. Rev. Lett.,49: 702–704.

    Article  MathSciNet  Google Scholar 

  8. G. A. Baker, D. Bessis, P. Moussa (1984):A family of almost periodic Schrödinger operators. Physica A,124: 61–77.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. F. Barnsley, J. S. Geronimo, A. N. Harrington (1983):Infinite-dimensional Jacobi matrices associated with Julia sets. Proc. Amer. Math. Soc.,88, #4: 625–630.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. R. Handy, G. Mantica (1990):Inverse problems in fractal construction: Moment method approach. Physica D,43: 17–36.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Mantica, A. Sloan (1989):Chaotic optimization and the construction of fractals. Complex Systems,3: 37–62.

    MATH  MathSciNet  Google Scholar 

  12. E. R. Vrscay, C. J. Roehrig (1989):Iterated function systems and the inverse problem of fractal construction using moments. In: Computers and Mathematics (E. Kaltofen, S. M. Watt, eds.), Berlin: Springer-Verlag.

    Google Scholar 

  13. D. Bessis, G. Mantica (1991):Construction of multifractal measures in dynamics from their invariance properties. Phys. Rev. Lett.,66: 2939–2942.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Hutchinson (1981):Fractals and self-similarity. Indiana J. Math.,30: 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Diaconis, M. Shahshahani (1986):Products of random matrices and computer image generation. Contemp. Math.,50: 173–182.

    MATH  MathSciNet  Google Scholar 

  16. M. F. Barnsley, S. G. Demko (1985):Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London A,399: 243–275.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. F. Barnsley (1988): Fractals Everywhere, New York: Academic Press.

    MATH  Google Scholar 

  18. A. Zygmund (1968): Classical Trigonometric Series. Cambridge: Cambridge University Press.

    Google Scholar 

  19. E. R. Vrscay, D. Weil (1991):Missing moments and perturbative methods for polynomial iterated function systems. Physica D,50: 478–492.

    Article  MATH  Google Scholar 

  20. C. W. Clenshaw (1955):A note on the summation of Chebyshev series. Math. Tables Aids Comput.,9: 118–120.

    MATH  MathSciNet  Google Scholar 

  21. D. Bessis, S. Demko (1991):Stable recovery of fractal measures by polynomial sampling. Physica D,47: 427–438.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. J. Stieltjes (1884):Quelques Recherches sur la Théorie des Quadratures dites Méchaniques. Oeuvres I, pp. 377–396.

    Google Scholar 

  23. C. Lanczos (1950):An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards,45: 255–282.

    MathSciNet  Google Scholar 

  24. C. C. Paige (1972):Computational variants of the Lanczos method for the eigenproblem. J. Inst. Math. Appl.,10: 373–381.

    MATH  MathSciNet  Google Scholar 

  25. E. R. Vrscay (1992):I.F.S. theory and applications and the inverse problem. In: Fractal Geometry and Analysis (J. Bélair, S. Dubuc, eds.), Dordrecht, NL, Kluwer, pp. 405–468.

    Google Scholar 

  26. S. Demko (1991):Euler Maclauren type expansions for some fractal measures. In: Practals in the Fundamental and Applied Sciences (H. O. Peitgen, J. M. Henriques, L. F. Penedo, eds.), Amsterdam, NL: Elsevier, North-Holland, pp. 101–110.

    Google Scholar 

  27. J. C. Wheeler, R. G. Gordon (1969):Rigorous bounds for the thermodynamic properties of harmonic solids. J. Chem. Phys.,51, #12: 5566.

    Article  Google Scholar 

  28. W. Van Assche (1990):Asymptotics for orthogonal polynomials and three-term recurrences. In: Orthogonal Polynomials (P. Nevai, ed.), Dordrecht, NL: Kluwer, pp. 435–462.

    Google Scholar 

  29. D. Bessis, G. Mantica (1993):Orthogonal polynomials associated to almost periodic Schrödinger operators. J. Comput. Appl. Math.,48: 17–32.

    Article  MATH  MathSciNet  Google Scholar 

  30. I. Guarneri, G. Mantica (1994):Multifractal energy spectra and their dynamical implications. Phys. Rev. Lett.,3379: 3379–3382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Dennis Stanton.

This paper is dedicated to the memory of Professor Joseph Ford

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantica, G. A stable stieltjes technique for computing orthogonal polynomials and jacobi matrices associated with a class of singular measures. Constr. Approx 12, 509–530 (1996). https://doi.org/10.1007/BF02437506

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02437506

AMS classification

Key words and phrases

Navigation