Skip to main content
Log in

Spike trains and kinase II for a digital model of long term memory (An exercise in evolutionary constraints)

  • Published:
Human Evolution

Abstract

Memory is the repetition of an even and this requires re-firing a sufficient number of neurons that did participate to the event. We assume that an event is identified by a digital code sealed into a molecular counter, kinase II, capable of taking billions of configurations.

We also assume that spike trains represent numbers in binary notation that are able to code and decode kinase II. Coding means that a number is imprinted by setting kinase II in a certain configuration, decoding means activating kinase II carrying that number in order to liberate Ca2+ via Calmodulin and open the various segments of circuit where it is located. We assume that coded kinase II is stored in dendritic spines, adjacent to synapses, that protect in from metabolic destruction of the coding.

The model easily interprets the fact that the same optical or olfactory stimuli will induce identical spike trains. Because identification requires the re-opening of a specific memory.

So the smell of a rose must open the circuit of the rosesmell via the appropriate spike train.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, C.H., Bartsch, D., and Kande, E.R., 1996, Toward a molecular definition of long-term memory storage,Proc. Natl. Acad. Sci. USA,93:13445–13452.

    Article  Google Scholar 

  • Bargmann, C.I., 1998, Neurobiology of theCaenorhabditis elegans genome,Science,282:2028.

    Article  Google Scholar 

  • Barnes, C.A., 1995, Involvement of LTP in memory: Are we “searching under the street light”?Neuron,15:751–754.

    Article  Google Scholar 

  • Bayer, K.U., Harbers, K., and Schulman, H., 1998, áKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle,EMBO Journal,17(19):5598–5605.

    Article  Google Scholar 

  • Berridge, M.J., 1997, Elementary and global aspects of calcium signalling,Journal of Physiology,499(2):291–306.

    Google Scholar 

  • Berridge, M.J., 1998, Neuronal calcium signaling,Neuron,21:13–26.

    Article  Google Scholar 

  • Bootman, M.D., and Berridge, M.J., 1995, The elemental principles of calcium signaling,Cell,83: 675–678.

    Article  Google Scholar 

  • Cherkashin, A.N., and Azarashvili, A.A., 1972, Pharmacological studies of memory,Soviet Neurology and Psychiatry Journal,22(3):504–509.

    Google Scholar 

  • Coomber, C., 1998a, Current theories of neuronal information processing performed by Ca2+/calmodulin-dependent protein kinase II with support and insights from computer modelling and simulation,Computers Chem.,22(2–3):251–263.

    Article  Google Scholar 

  • Coomber, C.J., 1988b, Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism,Neural Comput. 10(7):1653–78.

    Article  Google Scholar 

  • Covey, E. and Casseday, J.H., 1991, The monaural nuclei of the lateral lemniscus in an echolocating bat: Parallel pathways for analyzing temporal features of sound,Journal of Neuroscience,11(11):3456–3470.

    Google Scholar 

  • Csaba, G., and Kovacs, P., 1986, Studies into disturbing receptor “memory” in a unicellular (terrahymena) model system: Changes in the imprinting potential on exposure to combinations of related and unrelated hormones.Expl. Cell Biol.,54:333–337.

    Google Scholar 

  • De Koninck, P., and Schulman, H., 1998, Sensitivity of CaM kinase II to the frequency of Ca2+ autosphorylation of CaM kinase II,Biophysical Journal,70:2493–2501.

    Google Scholar 

  • Goldman-Rakic, P.S., 1996, Memory: Recording experience in cells and circuits: Diversity in memory research,Proc. Natl. Acad. Sci, USA,93:13435–13437.

    Article  Google Scholar 

  • Hanson, P.I., and Schulman, H., 1992, Neuronal Ca2+/calmodulin-dependent protein kinasesAnnu. Rev. Biochem.,61:559–601.

    Article  Google Scholar 

  • Hanson, P.I., Meyer, T., Stryer, L., and Schulman, H., 1994, Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals,Neuron,12:943–956.

    Article  Google Scholar 

  • Hardingham, G.E., Sangeeta, C., Johnson, C.M., and Bading, H., 1997, Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression,Nature,385:260–265.

    Article  Google Scholar 

  • Hendrix, R.W., Smith, M.C.M., Burns, R.N., Ford, M.E., and Hatfull, G.F., 1999, Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage,Proc. NAS,66(5):2192–2197.

    Google Scholar 

  • Jeffery, K.J., 1997, LTP and spatial learning — Where to next?Hippocampus,7:95–110.

    Article  Google Scholar 

  • Jensen, O., and Lisman, J.E., 1996a, Hippocampal CA3 region predicts memory sequences: Accounting for the phase precession of place cells,Learning & Memory,3:279–287.

    Google Scholar 

  • Jensen, O., and Lisman, J.E., 1996b, Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall,Learning & Memory,3:264–278.

    Google Scholar 

  • Joerges, J., Kuettner, A., Galizia, G., and Menzel, R., 1997, Representations of odours and odour mixtures visualized in the honeybee brain,Nature,387:285.

    Article  Google Scholar 

  • Kanaseki, T., Ikeuchi, Y., Sugiura, H., and Yamauchi, T., 1991,Journal of Cell Biology,115(4):1049–1060.

    Article  Google Scholar 

  • Katz, L.C., and Shatz, C.J., 1996, Synaptic activity and the construction of cortical circuits,Science,274:1133.

    Article  Google Scholar 

  • Koester, H.J., Sakmann, B., 1998, Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials,Proc. Natl. Acad. Sci. USA,95:9596–9601.

    Article  Google Scholar 

  • Laurent, G., Wehr, M., Davidowitz, H. J., 1996, Temporal representations of odors in an olfactory network,Neuroscience,16(12):3837–47.

    Google Scholar 

  • Lisman, J., 1994, The CaM kinase II hypothesis for the storage of synaptic memory,Trends Neurosci,17(10):406–412.

    Article  Google Scholar 

  • Lisman, J.E., 1997, Bursts as a unit of neural inforamation: Making unreliable synapses reliable,Trends Neurosci.,20(1):38–43.

    Article  Google Scholar 

  • Lisman, J.E., 1999, Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions,Neuron,22:233–242.

    Article  Google Scholar 

  • MacLeod K., Backer A., and Laurent, G., 1998, Who reads temporal information contained across synchronized and oscillatory spike trains?Nature 395:693–698.

    Article  Google Scholar 

  • Mainen, Z.F., Joerges, J., Huguenard, J.R., and Sejnowski, T.J., 1995, A model of spike initiation in neocortical pyramidal neurons,Neuron,15:1427–1439.

    Article  Google Scholar 

  • Matsushita T., Moriyama S., Fukai T., 1995, Switching dynamics and the transient memory storage in a model enzyme network involving Ca2+/calmodulin-dependent protein kinase II in synapses,Biol. Cybern.,72(6):497–509.

    Article  Google Scholar 

  • Moortgat, K.T., Keller, C.H., Bullock, T.H., and Sejnowski, T.J., 1998, Submicrosecond pacemaker precision is behaviorally modulated: The gymnotiform electromotor pathway,Proc. Natl. Acad. Sci. USA,95:4684–4689.

    Article  Google Scholar 

  • Mons, N., Guillou, J.-L., and Jaffard, R., 1999, The role of Ca2+/calmodulin-stimulable adenylyl cyclases as molecular coincidence detectors in memory formation,Cellular and Molecular Life Sciences,55:525–533.

    Article  Google Scholar 

  • Morrison, G.E., Wen, J.Y.M., Runciman, S., and van der Kooy, D., 1999, Olfactory associative learning inCaenorhabditis elegans is impaired inIrn-1 andIrn-2 mutants,Behavioral Neuroscience,113(2):358–367.

    Article  Google Scholar 

  • Neher, E., and Sakmann, B., 1992, The patch clamp technique,Scientific American, March:28.

    Google Scholar 

  • Nicolelis, M.A.L., Baccala, L.A., Lin, R.C.S., and Chapin, J.K., 1995, Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system,Science,268:1353.

    Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Stevenink, R., and Bialek, W., 1996,Spikes: Exploring the Neural Code, MIT, Cambridge, MA, USA.

    Google Scholar 

  • Silva L.R., Amitai Y., Connors, B.W., 1991, Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons,Science,251:432–5.

    Google Scholar 

  • Singer, W., and Gray, C.M., 1995, Visual feature integration and the temporal correlation hypothesis,Annual Review of Neurosciences,18:555–586.

    Article  Google Scholar 

  • Softky, W.R., 1994, Sub-millisecond coincidence detection in active dendritic trees,Neuroscience,58(1):13–41.

    Article  Google Scholar 

  • Softky, W.R., 1995, McCulloch-Pitts strikes back: A biophysical interpretation of cortical neurons as sub-millisecond binary devices,Mathematics and Computers in Simulation,40:71–79.

    Article  Google Scholar 

  • Softky, W.R., 1996. Fine analog coding minimizes information transmission,Neural Networks,9(1):15–24.

    Article  Google Scholar 

  • Squire, L.R., 1992, Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans,Psychological Review,99(2):195–231.

    Article  Google Scholar 

  • Steward, O., 1997, mRNA localization in neurons: A multipurpose mechanisms?Neuron,18:9–12.

    Article  Google Scholar 

  • Tiedge, H., Bloom, F.E., Richter, D., 1999, RNA, whither goest thou?Science,283:186.

    Article  Google Scholar 

  • Van der, Zee, E.A., and Douma, B.R.K., 1997, Historical review of research on protein kinase C in learning and memory,Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 21:379–406.

    Article  Google Scholar 

  • Volfovsky, N., Parnas, H., Segal, M., and Korkotian, E., 1999, Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: Theory and experiments,J. Neurophysiol.,81:450–462.

    Google Scholar 

  • Wang, X.J., 1999, Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons,Neuroscience,89(2):347–362.

    Article  Google Scholar 

  • Wehr, M., and Laurent, G., 1996, Odour encoding by temporal sequences of firing in oscillating neural assemblies,Nature,384, 162–66.

    Article  Google Scholar 

  • Whitelam, G.C., and Devlin, P.F., 1998, Light signalling inArabidopsis, Plant Physiol. Biochem.,36(1–2):125–133.

    Article  Google Scholar 

  • Zador, A., 1998,Impact of Synaptic Unreliability on the Information Transmitted by Spriking Neurons, American

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, C. Spike trains and kinase II for a digital model of long term memory (An exercise in evolutionary constraints). Hum. Evol. 15, 187–197 (2000). https://doi.org/10.1007/BF02437446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02437446

Keywords

Navigation