Journal of Structural Chemistry

, Volume 37, Issue 4, pp 544–556 | Cite as

Quantum chemical analysis of the Eley-Rideal and Langmuir-Hinshelwood mechanisms of the catalytic oxidation of carbon monoxide on the nickel surface

  • V. M. Pinchuk
  • E. S. Kotlyarova
  • N. V. Parkhomenko
  • P. N. Tsybulev


The studies concerned with the oxidation of carbon monoxide on the nickel surface are reviewed. The Eley-Rideal (ER) collision and Langmuir-Hinshelwood (LH) adsorption mechanisms of the oxidation are analyzed. Calculations of the activation barriers of the oxidation of carbon monoxide on the Ni (111), (100), and (110) faces were performed for the first time and involved optimization of the reaction paths by the collision and adsorption mechanisms. It is shown that on the Ni (111) and (110) faces the ER collision mechanism of the reaction is preferable with the activation barriers ΔE dis O 2=62 kJ/mole and ΔE trans O A21F50012x=25 kJ/mole for Ni (111) and ΔE dis O 2=72 kJ/mole and ΔE trans O 2=20 kJ/mole for Ni (110); on the Ni (100) face, the LH adsorption mechanism with the activation barriers ΔE dis O 2=75 kJ/mole and ΔE trans O 2=42 kJ/mole is favored. Analysis of the potential barriers for the catalytic oxidation of carbon monoxide on the Ni surfaces suggests the LH mechanism to be preferential, although insignificant differences in the activation barries can lead to the oscillatory reaction mechanism, which is confirmed experimentally. The calculations were performed by the LCAO MO SCF method in the MINDO/3 approximation.


Carbon Monoxide Bond Energy Activation Barrier Nickel Oxide Nickel Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Roiter,Introduction to the Theory of Kinetics and Catalysis [in Russian], Izdatelstvo Akademii Nauk USSR, Kiev (1962).Google Scholar
  2. 2.
    G. I. Golodets,Heterogeneous Catalytic Reactions Involving Molecular Oxygen [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  3. 3.
    A. Ozaki,Isotopic Studies of Heterogeneous Catalysis, Academic Press, New York (1977).Google Scholar
  4. 4.
    G. K. Boreskov,Heterogeneous Catalysis [in Russian], Nauka, Moscow (1988).Google Scholar
  5. 5.
    A. V. Sklyarov, I. I. Tret'yakov, B. R. Shub, and S. V. Roginskii,Dokl. Akad. Nauk SSSR,189, No. 6, 1302–1305 (1969).Google Scholar
  6. 6.
    I. I. Tret'yakov, A. V. Sklyarov, and B. R. Shub,Kinet. Katal.,11, No. 1, 166–175 (1970).Google Scholar
  7. 7.
    N. Pacia, A. Cassuto, A. Pentenero, and B. Weber,J. Catal.,41, No. 3, 455–465 (1976).CrossRefGoogle Scholar
  8. 8.
    G. Ertl and P. Rau,Surf. Sci.,15, No. 3, 443–465 (1969).CrossRefGoogle Scholar
  9. 9.
    G. Ertl and J. Koch, in:Catalysis, Vol. 2, North Holland, Amsterdam (1973), pp. 969–979.Google Scholar
  10. 10.
    G. Ertl and J. Koch,Z. Phys. Chem.,69, No. 5/6, 323–327 (1970).Google Scholar
  11. 11.
    T. Engel and G. Ertl,J. Chem. Phys. 69, No. 3, 1267–1281 (1978).CrossRefGoogle Scholar
  12. 12.
    H. Beusch, P. Fieguth, and E. Wicke,Chem. Ing. Tech.,44, No. 7, 445–451 (1972).Google Scholar
  13. 13.
    H. Beusch, P. Fieguth, and E. Wicke,Chem. React. Eng., The 1st International Symposium, 1970, Washington (1972), pp. 615–621.Google Scholar
  14. 14.
    G. K. Hori and L. D. Schmidt,J. Catal.,38, No. 1/3, 335–350 (1975).CrossRefGoogle Scholar
  15. 15.
    E. McCarthy, J. Zahradnik, G. C. Kuczynsri, and J. J. Carberry,39, No. 1, 29–35.CrossRefGoogle Scholar
  16. 16.
    P. Hugo and M. Jakubith,Chem. Ing. Tech.,44, No. 6, 383–387 (1972).Google Scholar
  17. 17.
    J. P. Dauchot and J. van Cakenberghe,Nature, Phys. Sci.,249, No. 152, 61–63 (1973).Google Scholar
  18. 18.
    V. I. Bykov, V. I. Eloknin, and G. S. Yablonskii,React. Kinet. Catal. Lett.,4, No. 2, 191–198 (1976).CrossRefGoogle Scholar
  19. 19.
    V. P. Ivanov, V. I. Savchenko, G. K. Boreskov, et al.,Surf. Sci.,61, No. 1, 207–220 (1976).CrossRefGoogle Scholar
  20. 20.
    V. P. Ivanov, G. K. Boreskov, V. I. Savchenko, et al.,J. Catal.,48, No. 1/3, 269–283 (1977).CrossRefGoogle Scholar
  21. 21.
    V. P. Ivanov, V. I. Savchenko, V. P. Tataurov, et al.,Dokl. Akad. Nauk SSSR,249, No. 3, 642–646 (1979).Google Scholar
  22. 22.
    J. L. Taylor, D. E. Ibbotson, and W. H. Weinberg,Surf. Sci.,79, No. 2, 349–384 (1979).CrossRefGoogle Scholar
  23. 23.
    J. L. Taylor, D. E. Ibbotson, and W. H. Weinberg,J. Catal.,80, No. 1, 1–12 (1980).CrossRefGoogle Scholar
  24. 24.
    G. K. Boreskov and V. I. Savchenko,The 7th International Congress on Catalysis, A46, Tokyo (1980).Google Scholar
  25. 25.
    J. L. Falconer, P. R. Wentrick, and H. Wise,J. Catal.,45, No. 2, 248–255 (1976).CrossRefGoogle Scholar
  26. 26.
    C. T. Campbell, Shi Shei-Kung, and J. M. White,J. Phys. Chem.,83, No. 17, 2253–2259 (1979).Google Scholar
  27. 27.
    M. Barber and J. G. Vickerman,Specialist Periodical Reports: Surface and Defect Properties of Solids, Vol. 5, London (1976).Google Scholar
  28. 28.
    M. Barber, J. G. Vickerman, and J. Wolstenholme,J. Chem. Soc., Faraday Trans. I,72, 40–45 (1975).CrossRefGoogle Scholar
  29. 29.
    A. M. Horgan and D. A. KingThe Structure and Chemistry of Solid Surfaces, Wiley, New York (1969).Google Scholar
  30. 30.
    Z. Oda,Bull. Chem. Soc. Jpn.,28, No. 2, 281–286 (1955).CrossRefGoogle Scholar
  31. 31.
    Z. Oda,J. Chem. Phys.,25, No. 3, 592–597 (1956).CrossRefGoogle Scholar
  32. 32.
    S. Wagener,61, No. 1, 267–271 (1957).Google Scholar
  33. 33.
    O. Beeck,Proc. R. Soc.,A177, 62–64 (1940).Google Scholar
  34. 34.
    M. McBaker and E. K. Rideal,Trans. Faraday Soc.,51, No. 7, 1597–1601 (1955).CrossRefGoogle Scholar
  35. 35.
    S. J. Gregg and H. E. Leach,J. Catal.,6, No. 5, 1966–1970 (1966).Google Scholar
  36. 36.
    R. C. Pitkethly, in:Chemosirption and Catalysis, P. Hepple (ed.), Institute of Petroleum, London (1970).Google Scholar
  37. 37.
    S. T. Ceyer, J. D. Beckerle, M. B. Lee, et al.,J. Vac. Sci. Technol. A,5, No. 4, 501–507 (1987).CrossRefGoogle Scholar
  38. 38.
    S. L. Tang, M. B. Lee, J. D. Beckerle, et al.,J. Chem. Phys. 84, No. 8, 6488–6494 (1986).CrossRefGoogle Scholar
  39. 39.
    S. L. Tang, M. B. Lee, J. D. Beckerle, et al.,Chem. Phys.,82, No. 6, 2826–2830 (1985).Google Scholar
  40. 40.
    S. I. Tang, M. B. Lee, J. D. Beckerle, et al.,J. Vac. Sci. Technol.,A3, No. 4, 1665–1670 (1985).CrossRefGoogle Scholar
  41. 41.
    S. I. Ishi, Y. Ohno, and B. Viswanathan,J. Sci. Ind. Res.,46, No. 12, 541–567 (1987).Google Scholar
  42. 42.
    H. Ibach and D. L. Mills,Electron Energy Loss Spectroscopy and J Surface Vibration, Academic Press, New York (1982).Google Scholar
  43. 43.
    T. B. Grimley in:Mol. Proc. Sol. Surf. Battelle Inst. Collog., McGraw-Hill, New York (1969), pp. 299–314.Google Scholar
  44. 44.
    P. Polizer and S. D. Kasten,Surf. Sci.,36, No. 1, 186–191 (1973).CrossRefGoogle Scholar
  45. 45.
    M. Moskovits and G. A. Ozin (eds.),Cryochemistry, Wiley, New York (1976).Google Scholar
  46. 46.
    D. J. Chadi and M. L. Cohen,Phys. Rev.,B8, No. 11, 5747–5752 (1973).CrossRefGoogle Scholar
  47. 47.
    D. W. Bullett and M. L. Cohen,Solid State Commun.,21, No. 1, 157–162 (1977).CrossRefGoogle Scholar
  48. 48.
    J. Smith (ed.),Theory of Chemisorption, Springer, Berlin (1980).Google Scholar
  49. 49.
    S. W. Bauschlicher and J. Nelin,Chem. Phys.,108, No. 1, 275–285 (1986).CrossRefGoogle Scholar
  50. 50.
    M. Passler, A. Ignatiev, F. Jona, et al.,Phys. Rev. Lett.,43, No. 2, 360–363 (1979).CrossRefGoogle Scholar
  51. 51.
    S. Andersson and J. B. Pendry,Phys. Rev. Lett.,43, No. 2, 363–366 (1979).CrossRefGoogle Scholar
  52. 52.
    R. L. Park and H. E. Farnsworth,J. Chem. Phys.,43, No. 5, 2351–2356 (1965).CrossRefGoogle Scholar
  53. 53.
    J. C. Betolin and B. Turdy,Surf. Sci.,102, No. 1, 131–138 (1981).CrossRefGoogle Scholar
  54. 54.
    S. Andersson,Proceedings of the 7th International Vacuum Congress and the 3rd International Conference on Solid Surface, Vienna (1977), pp. 815–818.Google Scholar
  55. 55.
    G. Blyholder,J. Vac. Sci. Technol.,11, No. 4, 865–871 (1971).Google Scholar
  56. 56.
    D. E. Ellis, E. J. Baerends, H. Adachi, and D. Averill,Surf. Sci.,64, No. 3, 649–653 (1977).CrossRefGoogle Scholar
  57. 57.
    J. N. Alliso and W. A. Goddard,Surf. Sci.,115, No. 3, 553–559 (1982).CrossRefGoogle Scholar
  58. 58.
    N. K. Ray and A. B. Andresson,,119, No. 1, 35–43 (1982).CrossRefGoogle Scholar
  59. 59.
    A. K. Strivastava, E. Miyazaki, and I. Kojima,Ind. J. Chem.,25A, No. 11, 987–992 (1986).Google Scholar
  60. 60.
    M. W. Roberts and C. S. McKee,Chemistry of the Metal-Gas Interface, Clarendon Press, Oxford (1978).Google Scholar
  61. 61.
    C. M. Quinn and M. W. Roberts,Trans. Faraday Soc.,60, No. 4, 899–904 (1964).CrossRefGoogle Scholar
  62. 62.
    M. W. Roberts and B. R. Wells,Disc. Faraday Soc.,41, No. 1, 162–167 (1966).CrossRefGoogle Scholar
  63. 63.
    M. W. Roberts and B. R. Wells,Trans. Faraday Soc.,62, No. 4, 1608–1613 (1967).Google Scholar
  64. 64.
    T. A. Delchar and F. C. Tompkins,Proc. R. Soc.,A300, No. 1, 141–146 (1967).Google Scholar
  65. 65.
    D. Brennan and M. J. Graham,Disc. Faraday Soc.,41, No. 1, 95–101 (1966).CrossRefGoogle Scholar
  66. 66.
    P. H. Holloway and J. B. Hudson,Surf. Sci.,43, No. 1, 123–129 (1974).CrossRefGoogle Scholar
  67. 67.
    G. D. Smith and J. S. Anderson,J. Chem. Soc., Faraday Trans. I,72, No. 4, 1231–1237 (1976).CrossRefGoogle Scholar
  68. 68.
    M. J. Graham, G. I. Sproule, D. Caplan, and M. Cohen,J. Electrochem. Soc.,119, No. 3, 883–887 (1972).Google Scholar
  69. 69.
    G. Ravida and F. Pratesi,Surf. Sci.,52, No. 3, 542–555 (1975).CrossRefGoogle Scholar
  70. 70.
    H. Conrad, G. Ertl, J. Kuppers, and E. E. Latta,,65, No. 1, 245–260 (1977).CrossRefGoogle Scholar
  71. 71.
    G. K. Boreskov and V. I. Savchenko,New Horizons in Catalysis: Proceedings of the 7th International Congress on Catalysis, Part A, Amsterdam (1981), pp. 655–668.Google Scholar
  72. 72.
    I. Toyoshima and G. A. Somorjai,Catal. Rev.,19, No. 1, 105–159 (1979).Google Scholar
  73. 73.
    A. A. Tsyganenko, T. A. Rodionova, and V. N. Filimonov,React. Kinet. Catal. Lett.,11, No. 2, 113–116 (1979).CrossRefGoogle Scholar
  74. 74.
    C. S. Wang and A. J. Freeman,Phys. Rev.,B19 No. 9, 4930–4936 (1979).CrossRefGoogle Scholar
  75. 75.
    J. E. Demuth, D. W. Jepsen, and P. M. Marcus,Phys. Rev. Lett.,31, No. 2, 540–545 (1973).CrossRefGoogle Scholar
  76. 76.
    J. D. Beckerle, Q. Y. Yang, A. D. Johnson, and S. T. Ceyer,Surf. Sci.,195, 77–93 (1988).CrossRefGoogle Scholar
  77. 77.
    H. Ibach and D. Bruchmann,Phys. Rev. Lett.,44, No. 1, 36–42 (1980).CrossRefGoogle Scholar
  78. 78.
    H. Kang, S. R. Kesi, O. Grizzi, and J. W. Rabalais,J. Chem. Phys.,88, No. 9, 5894–5901 (1988).CrossRefGoogle Scholar
  79. 79.
    J. M. McKay and V. E. Henrich,J. Vac. Sci. Technol.,A5, No. 4, 722–723 (1987).CrossRefGoogle Scholar
  80. 80.
    I. Panas, P. Siegbahn, and U. Wahlgren,Chem. Phys.,112, No. 3, 325–337 (1987).CrossRefGoogle Scholar
  81. 81.
    T. S. Kusuma and A. L. Companion,Surf. Sci.,195, No. 1, 59–76 (1988).CrossRefGoogle Scholar
  82. 82.
    F. Raatz and O. R. Salahub,Surf. Sci.,176, 219–248 (1986).CrossRefGoogle Scholar
  83. 83.
    A. Shishl, P. Menzel, and N. Rosch,Chem. Phys. Lett.,105, 285–290 (1984).CrossRefGoogle Scholar
  84. 84.
    W. Eberhart, F. M. Hofmann, R. de Paola, et al.,Phys. Rev. Lett.,5, No. 16, 1856–1859 (1985).CrossRefGoogle Scholar
  85. 85.
    H. O. Beckmann and G. H. Pacchioni,Chem. Phys. Lett.,116, No. 5, 423–428 (1985).CrossRefGoogle Scholar
  86. 86.
    S. G. Gagarin and N. A. Teterin,Teor. Éksp. Khim.,24, No. 3, 299–305 (1988).Google Scholar
  87. 87.
    P. N. Tsybulev, V. M. Pinchuk, and V. D. Parkhomenko,Kataliz Katalizatory,28, 54–61 (1992).Google Scholar
  88. 88.
    P. N. Tsybulev, V. M. Pinchuk, and V. D. Parkhomenko,Zh. Neorg. Khim.,35, No. 9, 236–239 (1991).Google Scholar
  89. 89.
    P. N. Tsybulev, V. M. Pinchuk, and V. D. Parkhomenko,Zh. Fiz. Khim.,66, No. 6, 1511–1515 (1992).Google Scholar
  90. 90.
    V. D. Parkhomenko, N. V. Parkhomenko, V. M. Pinchuk, et al.,Quantum Chemical Study of Hydrogen Adsorption on 3d Metal Oxides [in Russian], Preprint/NMK BO, Kiev (1991).Google Scholar
  91. 91.
    Yu. I. Bratushko,Coordination Compounds of 3d Transition Metals with Molecular Oxygen, Naukova Dumka, Kiev (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. M. Pinchuk
  • E. S. Kotlyarova
  • N. V. Parkhomenko
  • P. N. Tsybulev

There are no affiliations available

Personalised recommendations