Journal of Sol-Gel Science and Technology

, Volume 8, Issue 1–3, pp 883–887 | Cite as

Diffusion of solvents and cations in porous sol-gel glass

  • Neil D. Koone
  • T. W. Zerda
Article

Abstract

Diffusion coefficients for water, cyclohexane, toluene, chloroform, acetone and acetonitrile in porous sol-gel glass were determined using the diaphragm and radioactive tracer techniques. Polar solvents were found to diffuse faster than nonpolar solvent within porous sol-gel glass. The diffusion coefficients of Nd3+ and Er3+ inside porous sol-gel glass were determined from concentration profiles within monoliths impregnated by 1.6M rare earth salts dissolved in either acetone or water. To study the effects of ligands on the diffusion, four different erbium salts were used: nitrate, chloride, bromide, and perchloride. It was found that the diffusion rate increases with decreasing radius of rare earth coordination sphere.

Keywords

diffusion acetone cyclohexane erbium and neodymium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Shingyouchi and S. Konishi, Appl. Opt.29, 4061 (1990).Google Scholar
  2. 2.
    N.D. Koone and T.W., Zerda, J. Non-Cryst. Solids183, 243 (1995).CrossRefGoogle Scholar
  3. 3.
    Y. Asahara, H. Sakai, S. Shingaki, S. Nakayama, K. Nakagama, and T. Izumitani, Appl. Opt.24, 4312 (1985).CrossRefGoogle Scholar
  4. 4.
    M. Yamane, SPIE (Sol-Gel Optics III)2288, 546 (1994).Google Scholar
  5. 5.
    Y. Shao, N. Koone, and T.W. Zerda, inBetter Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, 1994), pp. 943–948.Google Scholar
  6. 6.
    L. Nikiel and T.W. Zerda, J. Phys. Chem.95, 4063 (1991).CrossRefGoogle Scholar
  7. 7.
    T.W. Zerda, A. Brodka, and J. Coffer, J. Non-Cryst Solids168, 33 (1994).CrossRefGoogle Scholar
  8. 8.
    H.J.V. Tyrell and K.R. Harris,Diffusion in Liquids (Butterworths, Boston, 1984), pp. 104–117.Google Scholar
  9. 9.
    D.W. Sindorf and G.E. Maciel, J. Phys. Chem.87, 5516 (1983).CrossRefGoogle Scholar
  10. 10.
    F. D’Orazio, S. Bhattacharja, W.P. Halperin, K. Eguchi, and T. Mizusaki, Phys. Rev. B42, 9810 (1990).CrossRefGoogle Scholar
  11. 11.
    A. Mitzithras, F.M. Coveney, and J.H. Strange, J. Molecular Liquids54, 273 (1994).Google Scholar
  12. 12.
    T.W. Zerda, inChemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (John Wiley & Sons, New York, 1992), pp. 103–113.Google Scholar
  13. 13.
    W.D. Dozier, J.M. Drake, and J. Klafter, Phys. Rev. Let.56, 197 (1986).CrossRefGoogle Scholar
  14. 14.
    G. Liu, Y. Li, and J. Jonas, J. Chem. Phys.95, 6892 (1991).CrossRefGoogle Scholar
  15. 15.
    M.L. Steele and D.L. Wertz, Inorg. Chem.16, 1225 (1977).CrossRefGoogle Scholar
  16. 16.
    G. Johansson and H. Yokoyama, Inorg. Chem.29, 2460 (1990).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Neil D. Koone
    • 1
  • T. W. Zerda
    • 1
  1. 1.Physics DepartmentTexas Christian UniversityFort Worth

Personalised recommendations