Advertisement

Human Evolution

, Volume 5, Issue 1, pp 21–53 | Cite as

Macrodontia in Pleistocene humans from Europe as a feature of physiological acromegalosis: association with geomagnetic dipole field intensity

  • F. Ivanhoe
  • E. A. Hammel
Article

Abstract

In a continuing investigation of acromegalosis in Pleistocene humans, macrodontia of the cheek teeth, estimated by their average summed occlusal areas (posterior ASOA), is related to geomagnetic field intensity of the Earth's main dipole (GMFI), measured in dipole moment units (DMU). The odontometric baseline derives from 2,111 teeth published for Europe, dated ca. 3000,000–5,000 years BP, grouped into twelve databases according to independent archeological and geological criteria. Most of the dental measurements are fromFrayer (1978) andWolpoff (1971, 1979, 1982). The GMFI baseline is adapted from the North Pacific deep-sea core data ofWollin et al. (1971), as in previos papers on hyperostosis (Ivanhoe, 1979) and progressive hypercrania (Ivanhoe, 1982). Parametric statistical analysis of thin human Pleistocene bioenvironmental association reveals (1) that two distinct, noncontemporaneous macrodontia lineages are present; (2) that posterior ASOA is a direct linear function of mean DMU; and (3) that time depth is not, by itself, a good predictor of macrodontia. Together, the combined GMFI, geological time depth, and specific lineage variables account for nearly 90% of the total variance in posterior ASOA. The earlier lineage, dated ca. 300,000–60,000 years BP, corresponding to advancedHomo erectus, preneandertals and early neandertals, and subdivided into two populations at about 130,000 years BP, is much more macrodont than the later lineage, corresponding to late neandertals through Mesolithicsapiens, subdivided into ten sample.s Reflecting concurrent changes in mean DMU, posterior ASOA fell in the Riss-Wurm interglacial, rose again to a peak in the main Wurm glacial stage, and fell gradually thereafter to approximate modern normal tooth sizes by the beginning of the Holocene. GMFI dependent variability of Pleistocene human macrodontia in Europe parallels closely that observed for hyperostosis in the northern hemisphere (Ivanhoe, 1979).

The theory of Pleistocene human acromegalosis is discussed within the context of paleoanthropology, including aspects of the proposed geomagnetotrophic-neuroendocrine mechanism, and the question of rickets in the neandertals (Ivanhoe, 1970) is updated.

Keywords

Growth Hormone Acromegaly Rickets Hyperostosis Before Present 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey W.R., 1984.Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey W.R., & Lawrence W.F. (eds.) Nonlinear electrodynamics in biological systems. New York: Plenum, pp 3–22.Google Scholar
  2. Albertsson-Wikland K., Rosberg S., &Hall K., 1987.Spontaneous secretion of growth hormone and serum levels of insulin like growth factor I and somatomedin binding protein in children of different growth rates. In: Isaksson O. Binder C., Hall K., & Hokfelt B. (eds.) Growth hormone, basic and clinical aspects. Amsterdam: Elsevier Excerpta Medica, pp 163–175.Google Scholar
  3. Aloia J.F., Roginsky S., Jowsey J., Dombrowski C.S., Shukla K.K., &Cohn S.H., 1972.Skeletal metabolism and body composition in acromegaly. J. Clin. Endocrinol. Metab. 35: 543–551.Google Scholar
  4. Athenstaedt H., 1969.Permanent electric polarization and pyroelectric behavior of the vertebrate skeleton. IV. The cranial bones of man. Z. Zellforsch. 97: 537–548.CrossRefGoogle Scholar
  5. Athenstaedt H., 1971.Pyroelectric and piezoelectric behaviour of human dental hard tissues. Arch. Oral Biol., 16: 495–501.CrossRefGoogle Scholar
  6. Atkinson F.R.B., 1932.Acromegaly. London: Bale and Danielsson.Google Scholar
  7. Bartucz L., 1929.Uber die anthropologischen Ergebnisse der Ausgrabungen von Mosonszentjanos, Ungarn. Skythika Prague, 2: 83–96, Plate XVII.Google Scholar
  8. Bassett C.A.L., 1971.Biophysical principles affecting bone structure. In: Bourne G.H. (ed.) The biochemistry and physiology of bone, vol. 3. London: Academic. Press, pp. 1–76.Google Scholar
  9. Bassett C.A.L., 1987.Low energy pulsing electromagnetic fields modify biomedical processes. Bioessays 6: 36–42.CrossRefGoogle Scholar
  10. Bassett C.A.L., Mitchell S.N., &Gaston S.R., 1981.Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint Surg., 63A: 511–523.Google Scholar
  11. Bassett C.A.L., Pawluk R.J., &Pilla A.A., 1974.Augmentation of bone repair by inductively applied coupled electromagnetic fields. Science, 184: 575–577.Google Scholar
  12. Bassett L.S., Tzitzikalakis G., Pawluk R.J., &Bassett C.A.L., 1979.Prevention of disuse osteoporosis in the rat by means of pulsing electromagnetic fields. In: Brighton C.T., Black J., and Pollack S.R. (eds.) Electric properties of bone and cartilage: experimental effects and clinical applications. New York: Grune and Stratton, pp. 311–331.Google Scholar
  13. Becker R.A., &Chambers J.M., 1984.S, an interactive environment for data analysis and graphics. Belmont, California: Wadsworth.Google Scholar
  14. Becks H., Collins D.A., Asling C.W., Simpson M.E., Li C.H., &Evans H.M., 1948.The gigantism produced in normal rats by injection of the pituitary growth hormone. V. Skeletal changes: skull and dentition. Growth 12: 55–67.Google Scholar
  15. Bell N.H., &Bartter F.C., 1967.Studies of Ca-47 metabolism in acromegaly. J. Clin. Endocrinol. Metab., 27: 178–184.CrossRefGoogle Scholar
  16. Bermudez de Castro J.M., 1986.Dental metrics from Atapuerca (Spain) I. Metrics. J. Hum. Evol. 15: 265–287.CrossRefGoogle Scholar
  17. Bilsborough A., 1972.Cranial morphology of Neanderthal man. Nature 237: 351–352.CrossRefGoogle Scholar
  18. Binkley S.A., 1988.The pineal: endocrine and nonendocrine function. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  19. Brace C.L., 1967.Environment, tooth form, and size in the Pleistocene. J. Dent. Res., 46: 809–816.Google Scholar
  20. Brace C.L., 1979.Krapina, “classic” neandertals, and the evolution of the European face. J. Hum. Evol., 8: 527–550.CrossRefGoogle Scholar
  21. Broca A., 1888.Un squelette d'acromegalie. Arch. Gen. Med., ser. 7, 22: 656–674.Google Scholar
  22. Broste K., Fischer-Moller K., &Pedersen P.O., 1944.The medieval Norsemen at Gardar; anthropological investigation. Meddelelser om Gronland, 89 (3): 1–62.Google Scholar
  23. Brothwell D., 1975.Adaptive growth rate changes as a possible explanation for the distinctiveness of the neanderthalers. J. Archaeol. Sci., 2: 161–163.CrossRefGoogle Scholar
  24. Bucha V., 1967.Archaeomagnetic and palaeomagnetic study of the magnetic field of the earth in the past 600,000 years. Nature, 213: 1005–1007.CrossRefGoogle Scholar
  25. Bucha V., Taylor R.E., Berger R., &Haury E.W., 1970.Geomagnetic intensity: changes during the past 3000 years in the Western Hemisphere. Science, 168: 111–114.Google Scholar
  26. Christy N.P., &Warren M.P., 1979.Hypersecretion of HGH: acromegaly and pituitary gigantism. In: DeGroot L.J. (gen. ed.) Endocrinology, vol. 1. New York: Grune and Stratton, pp. 237–241.Google Scholar
  27. Clark R.M., &Thompson R., 1978.An objective method for smoothing palaeomagnetic data. Geophys. J. Roy. Astron. Soc., 52: 205–213.Google Scholar
  28. Clark R.M., &Thompson R., 1979.A new statistical approach to the alignment of time series. Geophys. J. Roy. Astron. Soc., 58: 593–607.Google Scholar
  29. Cox A., 1969.Geomagnetic reversals. Science, 163: 237–245.Google Scholar
  30. Cunningham D.J., 1891.The skeleton of the Irish giant, Cornelius Magrath. Trans Roy Irish Acad. Dublin, 29: 553–612, plates I–VIII.Google Scholar
  31. Daughaday W.H., 1986.Regulation of serum insulin-like growth factor II. In: Raiti S., & Tolman R.A. (eds.) Human growth hormone. New York: Plenum, pp. 601–608.Google Scholar
  32. Day M.H., 1986.Guide to fossil man, 4 ed. Chicago, Illinois: University of Chicago Press.Google Scholar
  33. Dean M.C., Stringer C.B., &Bromage T.G., 1986.Age at death of the Neanderthal child from Devil's Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. Amer. J. Phys. Anthropol., 70: 301–309.CrossRefGoogle Scholar
  34. Duriez R., &Bassett C.A.L., 1980.Effet de certains signaux electriques transmis par bobine d'induction su la croissance ponderale, l'incorporation marquee, l'aspect histologique et ultrastructurel squelettique de l'embryon de Poulet. C.R. Acad. Sci. Paris, D290: 1483–1486.Google Scholar
  35. Erdheim J., 1931.Uber Wirbelsaulen veranderungen bei Akromegalie. Virchows Arch. Pathol. Anat. Physiol. 281: 197–296.CrossRefGoogle Scholar
  36. Evans H.M., Simpson M.E., &Li C.H., 1948a.The gigantism produced in normal rats by injection of the pituitary hormone. I. Body growth and organ changes. Growth, 12: 15–32.Google Scholar
  37. Evans H.M., Becks H., Asling C.W., Simpson M.E., &Li C.H., 1948b.The gigantism produced in normal rats by injection of the pituitary hormone. IV. Skeletal changes: tibia, costochondral junction, and caudal vertebrae. Growth, 12: 43–54.Google Scholar
  38. Fitton-Jackson S., 1985.Biophysical studies of pulsed magnetic field interaction with biological systems: part 1 — biophysical intercations. In: Chiabrera A., Nicolini C., & Schwan H.P. (eds.) Interactions between electromagnetic fields and cells. New York: Plenum, pp. 537–545.Google Scholar
  39. Frayer D.W., 1978.The evolution of the dentition in Upper Paleolithic and Mesolithic Europe. U. Kansas Publ. Anthropol., 10: 1–201.Google Scholar
  40. Geddes A.C., 1911.Report upon an acromegalic skeleton. J. Anat. Physiol. London, 45: 256–292.Google Scholar
  41. Giacobini G., DeLumley M.A., Yokoyama Y., &Nguyen H.V., 1984.Neanderthal child and adult remains from a Mousterian deposit in northern Italy (Caverne delle Fate, Finale Ligure). J. Hum. Evol., 13: 687–707.CrossRefGoogle Scholar
  42. Goodman R., &Henderson A.S., 1986.Some biological effects of electromagnetic fields. Bioelectrochem. Bioenerg., 15: 39–55.CrossRefGoogle Scholar
  43. Gorjanovic-Kramberger K., 1909.Der Unterkiefer der Eskimos (Gronlander) als Trager primitiver Merkmale. Berlin Akad. Wissensch. Sitzungsber., 52: 1282–1294.Google Scholar
  44. Grissett J.D., 1979.Enhanced growth in pubescent male primates chronically exposed to extremely low frequency fields. In: Phillips R.D., Gillis M.F., Kaune W.T., & Mahlum D.D. (eds.) Biological effects of extremely low frequency electromagnetic fields. Springfield, VA: National Technical Information Service, pp. 348–362.Google Scholar
  45. Guenther W.E., 1959.Zur Alterdatierung der diluvialen Fundstelle von Krapina in Kroatien. Ber. Deut. Ges. Anthropol., 6: 202–209.Google Scholar
  46. Hammen T. van der, Maarleveld G.C., Vogel J.C., &Zagwijn W.H., 1967.Stratigraphy, climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geol. Mijnb., 46: 79–95.Google Scholar
  47. Harris W.H., Heaney R.P., Jowsey J., Cockin J., Akins C., Graham J., &Weinberg E.H., 1972.Growth hormone: the effect on skeletal renewal in the adult dog. I. Morphometric studies. Calc. Tiss. Res., 10: 1–13.CrossRefGoogle Scholar
  48. Heaney R.P., Harris W.H., Cockin J., &Weinberg E.H., 1972.Growth hormone: the effect on skeletal renewal in the adult dog. II. Mineral kinetic studies. Calc. Tiss. Res., 10: 14–22.CrossRefGoogle Scholar
  49. Heim J.L., 1974a.Les hommes fossiles de La Ferrassie (Dordogne) et le probleme de la definition des neandertaliens classiques. L'Anthropol. Paris, 78:81–112.Google Scholar
  50. Heim J.L., 1974b.Les hommes fossiles de La Ferrassie (Dordogne) et le probleme de la definition des neandertaliens classiques. III. Squelette cephalique. L'Anthropol. Paris, 78: 321–378.Google Scholar
  51. Heim J.L., 1976.Les hommes fossiles de La Ferrassie. Tome I. Le gisement, les squelettes adultes: crane et squelette du tronc. Arch. Inst. Paleontol. Hum., Mem., 35: 1–332, plates 1–8.Google Scholar
  52. Heim J.L., 1982a.Les hommes fossiles de la Ferrassie. Tome II. Les squelettes adultes: squelettes des membres. Arch. Inst. Paleontol. Hum., 38: 1–272, plates 1–14.Google Scholar
  53. Heim J.L., 1982b.Les enfants neandertaliens de La Ferrassie; etude anthropologique et analyse ontogenique des hommes de neandertal. Paris: Masson.Google Scholar
  54. Hooton E.A., 1918.On certain Eskimoid characters in Icelandic skulls. Amer. J. Phys. Anthropol., 1: 53–76.CrossRefGoogle Scholar
  55. Hrdlicka A., 1927.The neanderthal phase of man. J. Roy. Anthropol. Inst., 57: 249–275.CrossRefGoogle Scholar
  56. Huxtable J., &Aitken M.J., 1977.Thermoluminescence dating of Lake Mungo geomagnetic polarity excursion. Nature, 265: 40–41.CrossRefGoogle Scholar
  57. Ito H., &Bassett C.A.L., 1983.Effect of weak, pulsing electromagnetic fields on neural regeneration in rat. Clin. Orthop., 181: 283–290.Google Scholar
  58. Ivanhoe F., 1970.Was Virchow right about Neandertal? Nature, 227: 577–579.CrossRefGoogle Scholar
  59. Ivanhoe F., 1975.Geomagnetic intensity and fossil man hyperostosis. Act. XLI Internat. Americanist Cong. (Mexico City), 1: 71–75.Google Scholar
  60. Ivanhoe F., 1979.Direct correlation of human skull vault thickness with geomagnetic intensity in some northern hemisphere populations. J. Hum. Evol., 8: 433–444.CrossRefGoogle Scholar
  61. Ivanhoe F., 1982.Coevolution of human brain size and paleolithic culture in the northern hemisphere: relation to geomagnetic intensity. J., Bioelectr. 1: 13–57.Google Scholar
  62. Ivanhoe F., 1983.Comment: on cranial deformation in Shanidar 1 and 5. Curr. Anthropol., 24: 127.CrossRefGoogle Scholar
  63. Ivanhoe F., 1985.On the neandertal pubis and acromegaly. Curr. Anthropol., 26: 526–529.CrossRefGoogle Scholar
  64. Ivanhoe F., 1987.Calcioprivic residual rickets in aboriginal California: a comparative study of the skeletal evidence. Paper read at annual meeting of American Anthropological Association, Chicago, IL., November 13, 1987.Google Scholar
  65. Jolley W.B., Hinshaw D.B., Knierim K., &Hinshaw D.B., 1983.Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromag., 4: 103–106.Google Scholar
  66. Kallay J., 1963.A radiographic study of the Neanderthal teeth from Krapina, Croatia. In: Brothwell D.R. (ed.) Dental anthropology. London: Pergamon, pp. 75–86.Google Scholar
  67. Keith A., 1911.An inquiry into the nature of the skeletal changes in acromegaly. Lancet, 1: 993–1002.CrossRefGoogle Scholar
  68. Keith A., 1925.The antiquity of man, vol. 2. London: Williams and Norgate.Google Scholar
  69. Keith A., 1931.New discoveries relating to the antiquity of man. New York: Norton.Google Scholar
  70. Kellgren J.H., Ball J., &Tutton G.K., 1952.The articular and other limb changes in acromegaly. Quart. J. Med., 21: 405–424.Google Scholar
  71. Kennedy G.E., 1985.Bone thickness in Homo erectus. J. Hum. Evol., 14: 699–708.CrossRefGoogle Scholar
  72. Kent D.V., 1982.Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments. Nature, 299: 538–539.CrossRefGoogle Scholar
  73. Kent D.V., &Opdyke N.D., 1977.Palaeomagnetic field intensity variation recorded in a Brunhes epoch deep-sea sediment core. Nature, 266: 156–159.CrossRefGoogle Scholar
  74. Kolossov Y.G., Kharitonov V.M., &Yakimov V.P., 1975.Palaeoanthropic specimens from the site Zaskalnaya VI in the Crimea. In: Tuttle R.H. (ed.) Paleoanthropology: morphology and paleoecology. Hague: Mouton, pp. 419–428.Google Scholar
  75. Kopper J.S., &Papamarinopoulos S., 1978.Human evolution and geomagnetism. J. Field. Archaeol., 5: 443–452.CrossRefGoogle Scholar
  76. Korkhaus G., 1933.The changes in the form of the jaws and in the position of the teeth produced by acromegaly. Internat. J. Orthodont. 19: 160–174.Google Scholar
  77. Lang E.K., &Bessler W.T., 1961.The roentgenologic features of acromegaly. Amer. J. Roentgenol. Rad. Ther. Nucl. Med., 86: 321–328.Google Scholar
  78. Langer K., 1872.Wachstum des menschlichen Skeletes mit Bezug auf den Riesen. Denkschr. Kais. Akad. Wiss. Math. Naturwiss. Class. Vienna, 31: 1–106, plates 1–7.Google Scholar
  79. Lewis U.J., Frigeri L.G., Sigel M.B., Tutwiler G.F., &Vanderlaan W.P., 1986.Multiple forms of human growth hormone. In: Raiti S., & Tolman R.A. (eds.) Human growth hormone. New York: Plenum, pp. 439–447.Google Scholar
  80. Liboff A.R., 1985.Geomagnetic cyclotron resonance in living cells. J. Biol. Phys., 13: 99–102.CrossRefGoogle Scholar
  81. Liboff A.R., Rozek R.J., Sherman M.L., McLeod B.R., &Smith S.D., 1987.Ca(+ +)-45 cyclotron resonance in human lymphocytes. J. Bioelectr., 6: 13–22.Google Scholar
  82. Liboff A.R., Williams T.Jr., Strong D.M., &Wistar R.Jr., 1984.Time-varying magnetic fields: effect on DNA synthesis. Science, 223: 818–820.Google Scholar
  83. Luben R.A., Cain C.D., Chen M.C.Y., Rosen D.M., &Adey W.R., 1982.Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc. Natl. Acad. Sci. USA, 79: 4180–4184.CrossRefGoogle Scholar
  84. de Lumley-Woodyear M.A., 1973.Anteneandertaliens et neandertaliens du bassin mediterraneen occidental europeen. Marseille, France: Editions du Laboratoire de Paleontologie Humaine Prehistorique, Universite de Provence.Google Scholar
  85. McElhinny M.W., &Senanayake W.E., 1982.Variations in the geomagnetic dipole 1: the past 50,000 years. J. Geomag. Geoelectr., 34: 39–51.Google Scholar
  86. Malez M. (ed.), 1978.Krapinski pracovjek i evolucija hominida. Zagreb, Yogoslavia: Jugoslavenska Akademija Znanosti i Umjetnosti, pp. 61–102, 331–371.Google Scholar
  87. Marie P., 1886.Sur deux cas d'acromegalie; hypertrophie singuliere non congenitale des extremites superieures, inferieures et cephalique. Rev. Med. Paris, 6: 297–333.Google Scholar
  88. Martin R.D., 1981.Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293: 57–60.CrossRefGoogle Scholar
  89. Mayr E., &Campbell B., 1971.Was Virchow right about Neanderthal? Nature, 229: 263–264.CrossRefGoogle Scholar
  90. Mellon S.H., 1986.Hormonal regulation of growth hormone gene expression. In: Raiti S., & Tolman R.A. (eds.) Human growth hormone. New York: Plenum, pp. 179–198.Google Scholar
  91. Merimee T.J., &Fineberg S.E., 1973.Dietary regulation of human growth hormone secretion. Metab. 22: 1491–1497.CrossRefGoogle Scholar
  92. Merimee T.J., &Rimoin D.L., 1986.Growth hormone and insulin-like growth factors in the western Pygmy. In: Cavalli-Sforza L.L. (ed.) African Pygmies. New York: Academic Press, pp. 167–177.Google Scholar
  93. Micoll C.S., 1978.Comparative aspects of prolactin physiology: Is prolactin the initial growth hormone in mammalian species also? In: Robyn C., & Harter M. (eds.) Progress in prolactin physiology and pathology. New York: Elsevier, pp. 175–188.Google Scholar
  94. Oakley K.P., 1966.Frameworks for dating fossil man, 2 ed. Chicago, Illinois, Aldine.Google Scholar
  95. Oakley K.P., Campbell B.G., &Molleson T.I. (eds.), 1971.Catalogue of fossil hominids, Part II: Europe. London: British Museum (Natural History).Google Scholar
  96. Oetteking B., 1908.Ein Beitrag zur Kraniologie des Eskimos. Abh. Ber. Kgl. Zool. Anthrop. Ethnogr. Mus. Dresden, 12 (3).Google Scholar
  97. Ottani V., Monti M.G., Puccinini G., Pernecco L., Zaniol P., Ruggeri A., &Barbiroli B., 1984.Pulsed electromagnetic fields increase the rate of rat liver regeneration after partial hepatectomy. Proc. Soc. Exp. Biol. Med., 176: 371–377.Google Scholar
  98. Parks J.S., 1986.Organization and function of the growth hormone gene cluster. In: Raiti S., & Tolman R.A. (eds.), Human growth hormone. New York: Plenum, pp. 199–209.Google Scholar
  99. Pavlakis G.N., &Hamer D.H., 1983.Expression of cloned growth hormone and metallothionein genes in heterologous cells. Rec. Prog. Horm. Res., 39: 353–385.Google Scholar
  100. Perkins M., 1931.Acromegaly in the Far North. Nature, 128: 491–492.Google Scholar
  101. Pindborg J.J., 1970.Pathology of the dental hard tissues. Philadelphia: W.B. Saunders, pp. 178–179.Google Scholar
  102. Poirier P., &Charpy A., 1931.Traite d'anatomie humaine, 4 ed., vol. 1, Paris: Masson.Google Scholar
  103. Puech P.F., &Albertini H., 1981.Anamel pits of the Lazaret man. J. Hum. Evol., 10: 449–452.CrossRefGoogle Scholar
  104. Reinhardt W.O., &Li C.H., 1953.Experimental production of arthritis in rats by hypophyseal growth hormone. Science, 117: 295–297.Google Scholar
  105. Sara V.R., &Hall K., 1980.Somatomedins and the fetus. Clin. Obst. Gynecol., 23: 765–778.CrossRefGoogle Scholar
  106. Sara V.R., Hall K., Misaki M., Fryklund L., Christensen N., &Wetterberg L., 1983.Ontogenesis of somatomedin and insulin receptors in the human fetus. J. Clin. Invest., 71: 1084–1094.CrossRefGoogle Scholar
  107. Schour I., &Massler M., 1943.Endocrines and dentistry. J. Amer. Dent. Assoc., 30: 595–603.Google Scholar
  108. Seligman C.G., 1931.Acromegaly among the old Northmen. Nature, 128: 221.Google Scholar
  109. Semm P., 1983.Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp. Biochem. Physiol., 76: 683–689.CrossRefGoogle Scholar
  110. Semm P., Schneider T., &Vollrath L., 1980.Effects of an Earth-strength magnetic field on electrical activity of pineal cells. Nature, 288: 607–608.CrossRefGoogle Scholar
  111. Sera C.L., 1910–11.Sul significato della platicefalia con speciale considerazione della razza di Neanderthal. Arch. Antropol. Etnol., 40: 381–432, and 41:40–82.Google Scholar
  112. Sergi S., &Ascenzi A., 1955.La mandibola neandertaliana Circeo III (Manbibola B). Riv. Antropol. Rome, 42: 337–387.Google Scholar
  113. Sigurdsson G., Nunziata V., Reiner M., Nadarajah A., &Joplin G.F., 1973.Calcium absorption and excretion in the gut in acromegaly. Clin. Endocrin. 2: 187–192.CrossRefGoogle Scholar
  114. Sjoberg H.E., 1970.Retention of orally administered Ca-47 in man under normal and diseased conditions studied with a whole-body counter technique. Acta Med. Scand. Supp., 509: 1–28.Google Scholar
  115. Smith B.H., 1986.Dental development in Australopithecus and earlyHomo. Nature, 323: 327.CrossRefGoogle Scholar
  116. Smythe G.A., &Lazarus L., 1974.Growth hormone responses to melatonin in man. Science, 184: 1373–1374.Google Scholar
  117. Stafne E.C., 1950.Dental roentgenologic aspects of systemic disease. J. Amer. Dent. Assoc., 40: 265–283.Google Scholar
  118. Steinbach H.L., Feldman R., &Goldberg M.B., 1959.Acromegaly. Radiol., 72: 535–548.Google Scholar
  119. Straus W.L.Jr., &Cave A.J.E., 1957.Pathology and the posture of Neanderthal man. Quart. Rev. Biol., 32: 348–363.CrossRefGoogle Scholar
  120. Stringer C.B., Howell F.C., &Melentis J.K. 1979.The significance of the fossil hominid skull from Petralona, Greece. J. Archaeol. Sci., 6: 235–253.CrossRefGoogle Scholar
  121. Stuber J.L., &Palacios E., 1971.Vertebral scalloping in acromegaly. Amer. J. Roentgenol. Rad. Ther. Nucl. Med., 112: 397–400.Google Scholar
  122. Suarez R.K., 1974.Neandertal dental asymmetry and the probable mutation effect. Amer. J. Phys. Anthropol., 41: 411–416.CrossRefGoogle Scholar
  123. Thompson D.D., &Trinkaus E., 1981.Age determination for the Shanidar 3 Neanderthal. Science, 212: 575–577.Google Scholar
  124. Thompson R., &Oldfield F., 1986.Environmental magnetism. London: Allen and Unwin.Google Scholar
  125. Thomson H.A., 1890.Acromegaly, with the description of a skeleton. J. Anat. Physiol. London, 24: 475–492.Google Scholar
  126. Trinkaus E., 1982.Artificial cranial deformation in the Shanidar 1 and 5 neandertals. Curr. Anthropol., 23: 198–199.CrossRefGoogle Scholar
  127. Trinkaus E., 1983.The Shanidar neandertals. London: Academic Press.Google Scholar
  128. Trinkaus E., 1984.Neandertal pubic morphology and gestation length. Curr. Anthropol., 25: 509–514.CrossRefGoogle Scholar
  129. Trinkaus E., 1986.The Neandertals and modern human origins. Ann. Rev. Anthropol., 15: 193–218.CrossRefGoogle Scholar
  130. Trinkaus E., &Smith F.H., 1985.The fate of the Neandertals. In: Delson E. (ed.), Ancestors: the hard evidence, New York: Liss, pp. 325–333.Google Scholar
  131. Tukey J.W., 1977.Exploratory data analysis. Reading, Massachusetts: Addison-Wesley.Google Scholar
  132. United States Naval Oceanographic Office, 1965.United States Geological Survey Chart No. 1703, 3 ed. Washington: United States Government Printing Office.Google Scholar
  133. Vandermeersch B., 1965.Position stratigraphique et chronologie relative des restes humains du Paleolitique moyen du Sud-Ouest de la France. Ann. Paleontol. Vert., 51: 69–126.Google Scholar
  134. Vaughan G., 1984.Melatonin in humans. In: Reiter R. (ed.) Pineal research reviews II. New York: Liss, pp. 141–201.Google Scholar
  135. Welker H.A., Semm P., Willig R.P., Commentz J.C., Wiltschko W., &Vollrath L., 1983.Effects of an artificial magneticfield on serotonin N-acetyl transferase activity and melatonin content of the rat pineal gland. Exp. Brain. Res., 50: 426–432.CrossRefGoogle Scholar
  136. Willoughby J.O., &Martin J.B., 1978.The suprachiasmatic nucleus synchronizes growth hormone secretory rhythms with the light-dark cycle. Brain. Res., 151: 413–417.CrossRefGoogle Scholar
  137. Woerkom A. van, 1953.The astronomical theory of climate changes. In: Shapley H. (ed.) Climatic change. Cambridge, Massachusetts: Harvard University Press, pp. 147–157.Google Scholar
  138. Woldstedt P., 1960.Die letzte Eiszeit in Nordamerika und Europa. Eiszeit. Gegenw., 11: 148–165.Google Scholar
  139. Wollin G., Ericson D.B., &Ryan W.B.F., 1971.Variations in magnetic intensity and climatic changes. Nature, 232: 549–551.CrossRefGoogle Scholar
  140. Wollin G., Ryan W.B.F., &Ericson D.B., 1977.Paleoclimate, paleomagnetism and the eccentricity of the earth's orbit. Geophys. Res. Lett. 4: 267–270.Google Scholar
  141. Wolpoff M.H., 1971.Metric trends in hominid dental evolution. Case Western Reserve Univ. Stud. Anthropol., 2: 1–244.Google Scholar
  142. Wolpoff M.H., 1979.The Krapina dental remains. Amer. J. Phys. Anthropol., 50: 67–114.CrossRefGoogle Scholar
  143. Wolpoff M.H., 1982.The Arago dental sample in the context of hominid dental evolution. Congr. Internat. Paleontol. Hum. Nice (Pretirage), 1: 389–410.Google Scholar

Copyright information

© Editrice Il Sedicesimo 1990

Authors and Affiliations

  • F. Ivanhoe
    • 1
  • E. A. Hammel
    • 2
  1. 1.Lowie Museum of AnthropologyUniversity of CaliforniaUSA
  2. 2.Department of AntropologyUniversity of CaliforniaBerkeleyCaliforniaUSA

Personalised recommendations