Advertisement

Applied Mathematics and Mechanics

, Volume 22, Issue 8, pp 956–964 | Cite as

The discrete models on a frictional single degree of freedom system

  • Feng Qi
  • Zhang Xiang-ting
Article
  • 28 Downloads

Abstract

Two stochastic models on simple random system with friction were developed. One of them was a discrete model by a two-dimensional mean map applied to describe random stick-slip motion. The numerical exaples show that external noise can reduce the complexity of the system behavior. Secondly, a probability model described was established with coexistence of stick-slip and slip motions. The numerical results point out that this model possesses pure stochastic behavior.

Key words

stochastic frictional system stick-slip motion stochastic chaos 

CLC number

O324 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Popp K, Stelter P. Nonlinear oscillations of structures induced by dry friction[A]. In:IUTAM Symposium on Nonlinear Dynamics in Engineering Systems[C]. Stuttgart, 1989.Google Scholar
  2. [2]
    Feeny B F, Moon F C. Autocorrelation on symbol dynamics for a chaotic dry-friction oscillator[J].Phys Lett A, 1989,141:397–400.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Popp K. Some model problems showing stick-slip motion and chaos[A]. In: Ibrahim R A, Soom A Eds.Friction-Induced Vibration, Chatter, Squeal, and Chaos[C]. ASME D E,1992,49,1–12.Google Scholar
  4. [4]
    Popp K. Nichtlineare Schwingungen mechanischer Strukturen mit Fuge-und Kontaktstellen[J].Z Angew Math Mech, 1994,74(3):147–165.Google Scholar
  5. [5]
    Popp K, Stelter P. Stick-slip vibrations and chaos[J].Philos Trans Roy Soc London Ser A, 1990,332:89–105.MATHGoogle Scholar
  6. [6]
    Popp K, Hinrichs N, Oestreich M. Analysis of a self-excited friction oscillator with external excitation [A]. In: Guran A, Pfeiffer F, Popp K Eds.Dynamics With Friction[C]. Singapore: World Scientific, 1996.Google Scholar
  7. [7]
    Feeny B F. The nonlinear dynamics of oscillators with stick-slip friction[A]. In: Guran A, Pfeiffer F, Popp K Eds.Dynamics With Friction[C]. Singapore: World Scientific, 1996.Google Scholar
  8. [8]
    Feeny B F, Liang J W. Phase-space reconstructions of stick-slip systems[A]. In:Proc of 1995Design Engineering Tech Conf, Vol.3A[C]. ASME D E, 1995,84-1,1049–1060.Google Scholar
  9. [9]
    Feeny B F, Liang J W. A decrement method for the simultaneous estimation of Coulomb and viscous damping[J].J Sound Vib, 1996,195(1):149–154.CrossRefGoogle Scholar
  10. [10]
    Nagarajaiah S, Reinhorn A M, Constatinou M C Torional coupling in sliding base-isolated structures [J].ASCE J Struc Enggrg, 1993,119(1):130–149.CrossRefGoogle Scholar
  11. [11]
    Kapitaniak T.Chaos in System With Noise[M]. Singapore: World Scientific, 1988.Google Scholar
  12. [12]
    Ibrahim R A.Parametric Random Vibration[M]. New York: John Wiley & Sons, 1985.Google Scholar
  13. [13]
    Sheldon M Ross.Introduction to Probability Models[M]. New York, London: Academic Press INC, 1989.Google Scholar
  14. [14]
    Moss F, McVlintock P V E.Noise in Nonlinear Dynamical Systems[M]. Vol 2. Cambridge: Cambridge University Press, 1985.Google Scholar

Copyright information

© Shanghai University Press 2001

Authors and Affiliations

  • Feng Qi
    • 1
  • Zhang Xiang-ting
    • 1
  1. 1.Key Laboratory of Solid Mechanics of MOETongji UniversityShanghaiP R China

Personalised recommendations