Advertisement

Human Evolution

, Volume 2, Issue 5, pp 445–457 | Cite as

Fluorescent heterochromatin staining in primate chromosomes

  • J. Wienberg
  • R. Stanyon
Article

Abstract

Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea.

Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.

Key words

Primates Chromosomes Fluorochromes Evolution Phylogeny Heterochromatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham R., Wienberg J. &Schnedl W., 1983.Analysis of heterochromatin and identification of mitotic chromosome in Drosophila virilis by GC- and AT- specific fluorochromes. Mikroskopie, 40: 4–8.Google Scholar
  2. Baar H. J. &Ellison J. R., 1971.Quinacrine staining of chromosomes and evolutionary studies in Drosophila. Nature, 233: 190–191.CrossRefGoogle Scholar
  3. Beridze T., 1982.Satellite DNA. Berlin, New York: Springer.Google Scholar
  4. Bianchi M. S., Bianchi N. O., Panteliase G. E. &Wolff S., 1985.The mechanism and pattern of banding induced by restriction endonucleases in human chromosomes. Chromosoma, 91: (131–136).CrossRefGoogle Scholar
  5. Burk R. D., Szabo P. O., Brien S., Nash W. G., Yu L. &Smith K. D., 1985.Organization and chromosomal specificity of autosomal homologs of human Y chromosome repeated DNA. Chromosoma, 92: 225–233.CrossRefGoogle Scholar
  6. Chiarelli B., 1963.Comparative morphometric analysis of the primate chromosomes. III. The chromosomes of genera Hylobates, Colobus and Presbytis. Caryologia, 16: 637–648.Google Scholar
  7. Chiarelli B. &Lin C. C., 1972.Comparison of fluorescent patterns in human and chimpanzee chromosomes. Genen Phaenen, 15: 103–106.Google Scholar
  8. Cooke H. J. &McKay R. D. G., 1978.Evolution of a human Y chromosome specific repeated sequence. Cell, 13: 453–460.CrossRefGoogle Scholar
  9. Cooke H. J. &Hindley J., 1979.Cloning of satellite III DNA: Different components are on different chromosomes. Nucl. Acid Res., 6: 3177–3197.Google Scholar
  10. Cooke H. J., Schmidtke J. &Gosden J. R., 1981.Characterization of a human Y chromosome repeated sequence and related sequences in higher primates. Chromosoma, 87: 491–502.CrossRefGoogle Scholar
  11. De Stefano G. F. &Ferrucci L., 1986.New cytogenetic technique in the study of primate genome evolution. Hum. Gent., 72: 98–100.CrossRefGoogle Scholar
  12. De Stefano G. F., Romano E. &Ferrucci L., 1986.The Alu I-induced bands in metaphase chromosomes of orangutan (Pongo pygmaeus). Implications for the distribution pattern of highly repetitive DNA sequences. Hum. Genet., 72: 268–271.CrossRefGoogle Scholar
  13. Devilee P., Cremer T., Slagboom P., Bakker E., Scholl H. P., Hager H. D., Stevenson A. F. G., Cornelisse C. J. &Pearson P. L., 1986.Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18 and 21. Cytogenet. Cell. Genet., 41: 193–201.Google Scholar
  14. Gosden J. R., Mitchell A. R., Buckland R. A., Clayton R. P. &Evans H. J., 1975.The location of the four human satellite DNA sequences on human chromosomes. Exp. Cell Res., 92: 148–158.CrossRefGoogle Scholar
  15. Gosden J. R., Mitchell A. R., Seuanez H. N. &Gosden G. M., 1977.The distribution of sequences complementary to human satellite DNAs, I, II and IV in the chromosomes of chimpanzee — (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pygmaeus). Chromosoma, 63: 263–271.CrossRefGoogle Scholar
  16. Higgins M. J., Wang H., Shtromas I., Haliotis T., Roder J. C., Holden J. J. A. &White B. N., 1985.Organization of a repetitive human 1–8 kb Kpnl sequence localized in the heterochromatin of chromosome 15. Chromosoma, 93: 77–86.CrossRefGoogle Scholar
  17. Hörz W. &Zachau H. G., 1977.Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur. J. Biochem., 73: 383–392.CrossRefGoogle Scholar
  18. Holmquist G., 1975.Organisation and evolution of Drosophila heterochromatin. Nature, 257: 503–506.CrossRefGoogle Scholar
  19. Jones K. W. &Corneo G., 1971.Location of satellite and homogeneous DNA sequences on human chromosomes. Nature, New Bio., 233: 268–271.CrossRefGoogle Scholar
  20. Jorgensen A. L., Bostock C. J. &Bak A. L., 1986.Chromosome specific subfamilies within human alphoid repetitive DNA. J. Mol. Biol., 187: 185–196.CrossRefGoogle Scholar
  21. John B., Miklos G. L. G., 1979.Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol., 58: 1–114.Google Scholar
  22. Jones K. W., Prosser J., Corneo G., Ginelli E. &Babrom M., 1973.Satellite DNA, constitutive heterochromatin and human evolution In: Modern aspects of cytogenetics: constitutive heterochromatin in man. Symp. Med. Hoechst, 6: 45–61.Google Scholar
  23. Jones K. W., Purdom I. F., Prosser J. &Corneo G., 1974.The chromosomal localization of human satellite DNA I. Chromosoma, 49: 161–171.CrossRefGoogle Scholar
  24. Kurnit D. M., Neve R. L., Morton C. C., Bruns G. A. P., Ma N. S. F., Cox D. R., Klinger H. P., 1984.Recent evolution of DNA sequence homology in the pericentromeric regions of human acrocentric chromosomes. Cytogenet. Cell. Genet., 38: 99–105.Google Scholar
  25. Lewin R., 1982.Repeated DNA still in search of a function. Science, 217: 621–623.Google Scholar
  26. Lin C. C., Chiarelli B., De Boer L. E. M. &Cohen M. M., 1973.A comparison of fluorescent karyotypes of the chimpanzee (Pan troglodytes) and man. J. of Human Evolution, 2: 311–321.CrossRefGoogle Scholar
  27. Macgregor H. C. &Sessions S. K., 1986.The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective. Phil. Trans. R. Soc. Lond. B., 312: 243–259.Google Scholar
  28. Manuelidis L., 1978.Chromosomal localisation of complex and simple repeated human DNAs. Chromosoma, 66: 23–32.CrossRefGoogle Scholar
  29. Manzini G., Barcellona M. L., Avitabile M. &Quadrifoglio F., 1983.Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. Nucl. Acid. Res., 11: 8861–8875.Google Scholar
  30. Manzini G., Xodo L., Barcellona M. L. &Quadrifoglio F., 1985.Interaction of DAPI with doublestranded ribonucleic acids. Nucl. Acid. Res., 13: 8955–8967.Google Scholar
  31. Marks J., 1983.Evolutionary tempo and phylogenetic inference based on primate karyotypes. Cytogene. Cell. Genet., 34: 261–264.Google Scholar
  32. Marks J., 1985.C-Band variability in the common chimpanzee, Pan troglodytes. J. Hum. Evolution, 14: 669–675.CrossRefGoogle Scholar
  33. Miller D. A., 1977.Evolution of primate chromosomes. Science, 198: 1116–1124.Google Scholar
  34. Mitchell A. R., Seuanez H. N., Lawrie S. S., Martin D. E. &Gosden J. R., 1977.The location of DNA homologous to human satellite III DNA in the chromosomes of chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orang utan (Pongo pygmaeus). Chromosoma, 61: 345–358.CrossRefGoogle Scholar
  35. Mitchell A. R., Beauchamp R. S. &Bostock C. J., 1979.A study of sequence homologies in four satellite DNAs of man. J. Mol. Biol, 135: 127–149.CrossRefGoogle Scholar
  36. Mitchell A. R., Gosden J. R. &Ryder D. A., 1981.Satellite DNA relationship in man and the primates. Nucleic Acid Res, 9: 3235–3248.Google Scholar
  37. Mitchell A. R., Gosden J. R. &Miller D. A., 1985.A cloned sequence, p82h of the alphoid repeated DNA family found at the centromeres of all human chromosomes Chromosoma, 92: 369–377.CrossRefGoogle Scholar
  38. Pearson P. L., Bobrom M., Vosa C. G. &Barlow P. N., 1971.Quinacrine fluorescence in mammalian chromosomes. Nature, 231: 326–329.CrossRefGoogle Scholar
  39. Schardin M. &Hager H. D., 1987.In situ hybridization of the human satellite III DNA fragment describes a new heteromorphism of chromosome 1. Ann. Univ. Sarav. Med. Supplement 7: 246–249.Google Scholar
  40. Schmid M., Haaf T., Ott G., Scherres J. M. C. &Wensing J. A. B., 1986a.Heterochromatin in the chromosomes of the gorilla: Characterization with distamycin A/DAPI, D287/170, Chromomycin A, quinacrine and 5-azacytidine. Cytogenet. Cell. Genet., 41: 71–82.CrossRefGoogle Scholar
  41. Schmid M., Haaf T., Ott G. &Scherres J. M. J., 1986b.Evolutionary conservation of fragile sites induced by 5-azacytidine and 5-azadeoxycytidine in man, gorilla and chimpanzee. Hum., Genet., 71: 342–350.CrossRefGoogle Scholar
  42. Schnedl W., Abraham R., Dann O., Geber G. &Schweitzer D., 1981.Preferential fluorescent staining of heterochromatin regions in human chromosomes 9, 15, and the Y by D287/170. Hum. Genet., 59: 10–13.CrossRefGoogle Scholar
  43. Schweizer D., 1976.Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma, 58: 307–324.CrossRefGoogle Scholar
  44. Schweizer D., 1981.Counterstain-enchanced chromosome banding. Hum. Genet., 57: 1–14.Google Scholar
  45. Schweizer D., 1982.Distamycin — DAPI bands; properties and occurrence in species. In: Kew Chromosome Conference II, pp. 43–51, Allen, London.Google Scholar
  46. Schweizer D., Ambros P., Anderle M., Rett A. &Fiedler W., 1978.Demonstration of specific heterochromatic segments in the orangutan (Pongo pygmaeus) by a distamycin/DAPI double staining technique. Cytogen. Cell Genet., 24: 7–14.Google Scholar
  47. Schweizer D., Tohidast-Akrad M., Strehl S. &Dann O., 1987.Diverse fluorescent staining of human heterochromatin by the isomeric DAPI derivates D288/45 and D288/48. Ann. Univ. Sarav. Med. Supplement 7: 285–290.Google Scholar
  48. Seuanez H. N., Robison J., Martin D. E. &Short R. V., 1976.Fluorescent (F) bodies in the spermatozoa of man and the great apes. Cytogenet. Cell. Genet., 17: 317–326.Google Scholar
  49. Seuanez H. N., 1979.The phylogeny of human chromosomes. Springer, Berlin, New York.Google Scholar
  50. Stanyon R. &Chiarelli B., 1983.Phylogeny of the hominoidea: the chromosome evidence. J. Human Evol. 11: 493–504.CrossRefGoogle Scholar
  51. Stanyon R., Chiarelli B., Gottlieb B. K. &Patton W. H., 1986.The taxonomic and phylogenetic position of Pan paniscus: A chromosomes perspective. Am. J. Phy. Anthropol., 69: 489–498.CrossRefGoogle Scholar
  52. Uchida I. A. &Lin C. C., 1974. In: Human chromosome methodology, Yunis J. J. (ed.), New York, Academic Press.Google Scholar
  53. Varley J. M., McGregor H. C., Nardi I., Andrews C &Erba H. P., 1980.Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex. Chromosoma, 80: 289–307.CrossRefGoogle Scholar
  54. Wienberg J. & Stanyon R., 1987.DA/DAPI bands in the chromomes of Pan paniscus. Am. J. Primatology, in press.Google Scholar
  55. Willard H. F., 1985.Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. Genet., 37: 524–532.Google Scholar
  56. Wolfe J., Darling S. M., Erockson R. P., Craig I. W., Buckle V. J., Rigby P. W. J., Willard H. F., &Goodfellow P. N., 1985.Isolation and characterization of an alphaoid centromeric repeat family from the human Y chromosome. J. Mol. Biol., 182: 477–485.CrossRefGoogle Scholar
  57. Zimmer Ch. &Luck G., 1980.Correlation of the specific netropsin-DNA interaction with selective protection of endonuclease cleavage sites in DNA. Studia biophysica, 81: 63–64.Google Scholar

Copyright information

© Editrice II Sedicesimo 1987

Authors and Affiliations

  • J. Wienberg
    • 1
  • R. Stanyon
    • 1
  1. 1.Inst. of Anthropology and Human GeneticsUniversity of MunichW.Germany

Personalised recommendations