Skip to main content
Log in

Particle-in-cell simulation of stationary processes in a relativistic carcinotron

  • Published:
Russian Physics Journal Aims and scope

Abstract

A one-dimensional nonstationary model of relativistic carcinotrons, combines the particle-in-cell method in the description of an electron beam with a single-wave approximation in the description of the dynamics of an electromagnetic field. The influence of the intrinsic space charge of the beam is taken into account in the quasistatic approximation. A procedure is developed for computational experiment with a carcinotron in the axisymmetric approximation on the basis of the entirely electromagnetic code KARAT. The computations support the main known laws for a relativistic carcinotron. The effect the space charge has on inertial electronbeam bunching is examined. Mechanisms by which the space charge affects the carcinotron generation efficiency are demonstrated. The space charge may cause anomalously accelerated electrons in the beam and a reverse electron current to appear, increasing the impedance of the coaxial magnetically insulated diode that feeds the device. The carcinotron power and frequency are studied as functions of the strength of the guiding magnetic field. Cyclotron suppression of generation is confirmed. Calculation in combination with an electronic diode shows that generation at a higher frequency can be excited in the cyclotron “dip”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Carmel, J. Ivers, R. E. Nation, Phys. Rev. Lett.,33, 21 (1974).

    Article  Google Scholar 

  2. N. F. Kovalev, M. I. Petelin, M. D. Raizer, et al., Pis'ma Zh. Tekh. Fiz.,18, No. 4, 232 (1973).

    Google Scholar 

  3. N. F. Kovalev, Author's Abstract of Candidate's Dissertation [in Russian], Gorki (1983).

  4. N. S. Ginzburg and S. P. Kuznetsov, Relativistic High-Frequency Electronics. Problems of Increasing the Emission Power and Frequency [in Russian], IPF AN SSSR (Institute of Problems in Physics, Academy of Sciences of the USSR), Gorki (1981), pp. 101–104.

    Google Scholar 

  5. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,21, No. 7, 1037 (1978).

    ADS  Google Scholar 

  6. V. N. Shevchuk and D. I. Trubetskov (eds.), Carcinotrons [in Russian], Izd. Sarat. Univ. Saratov (1975)

    Google Scholar 

  7. N. V. Koteteshvili, P. V. Rybak, and V. P. Tarakanov, IOF AN SSSR Preprint No. 44 (Institute of General Physics, Academy of Sciences of the USSR), Moscow (1991).

    Google Scholar 

  8. V. P. Tarakanov, User's Manual for the KARAT Code, BRA, Springfield, VA (1992).

    Google Scholar 

  9. S. K. Godunov and V. S. Ryaben'kii, Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  10. C. Bedsell and A. Langdon, Computer Simulation of Plasma Physics [Russian translation], Énergoizdat, Moscow (1989).

    Google Scholar 

  11. V. A. Balakirev, A. O. Ostrovskii, and Yu. V. Tkach, XFTI Preprint No. 90-2 (Kharkov Physicotechnical Institute), TsNIIAtominform, Moscow (1990).

  12. V. Ya. Ivanov, Automated Electronic Device Design. Part 1. Computational Algorithms for Physical Fields [in Russian], Inst. Mat., Novosibirsk (1986).

    Google Scholar 

  13. S. D. Korovin, S. D. Polevin, A. M. Roitman, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., No. 12, 49 (1996).

    Google Scholar 

  14. A. M. Roitman, L. D. Moreland, E. Schamiloglu, and R. W. Lemke, Abstr. ICOPS '94, Santa Fe (1994), p. 194.

  15. N. I. Zaitsev, N. F. Kol'chugin, and M. I. Fuks, Zh. Tek. Fiz.,52, No. 8, 1611 (1982)

    Google Scholar 

  16. I. V. Lebedev, Microwave Engineering and Devices. Vol. 2. Electronic Microwave Devices [in Russian], Vysshaya Shkola, Moscow (1972).

    Google Scholar 

  17. Yu. F. Bondar', S. I. Zavorotnyi, A. L. Ipatrov, et al., Fiz. Plazmy,9, No. 2, 383 (1983).

    Google Scholar 

  18. É. B. Abubakirov, V. I. Belousov, V. M. Varganov, et al., Pis'ma Zh. Tekh. Fiz., No. 9, 533 (1983).

    Google Scholar 

Download references

Authors

Additional information

Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 62–83, December, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegel', I.V. Particle-in-cell simulation of stationary processes in a relativistic carcinotron. Russ Phys J 39, 1210–1228 (1996). https://doi.org/10.1007/BF02436164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02436164

Keywords

Navigation