Skip to main content
Log in

Radiative relaxation of low-energy electron excitations and point defects in beryllium oxide

  • Published:
Russian Physics Journal Aims and scope

Abstract

The mechanism by which elementary point defects arise and evolve in beryllium oxide crystals and the latest advances in the dynamics of electron excitations of this compound are considered. Experimental and theoretical results which touch on the generation and evolution of elementary point defects are obtained. The properties of intrinsic and impurity point defects, and the crystal-chemical fundamentals of defect generation, optical and luminescent transitions in them, and color centers are discussed. The electron structure of B2+, Al2+, Zn+, and [Li]0 defects, nonisothermal relaxation of paramagnetic centers, thermostimulated recombination processes, and the concept of the coexistence of two types of self-localized excitons in beryllium oxide, radiative annihilation of which gives rise to luminescence in the UV and far UV bands are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Belyaev, Beryllium Oxide [in Russian], Moscow (1986).

  2. S. B. Austerman, J. Nucl. Mater.,14, No. 3, 225–226 (1964).

    Article  Google Scholar 

  3. V. A. Maslov, G. M. Bylov, B. G. Nazurenko, A. V. Kruzhalov, and B. V. Shulgin, Proc. 6th Int. Conference on Crystal Growth, Vol. 3, Moscow (1980), pp. 268–269.

    Google Scholar 

  4. Ch. B. Lushchik and A. Ch. Lushchik, The Decay of Electron Excitations with the Formation of Defects in Solids [in Russian], Moscow (1989).

  5. K. Song and R. T. Williams, Self-Trapped Excitons, Springer Verlag, New York (1993).

    Google Scholar 

  6. V. Yu. Ivanov, V. A. Pustovarov, A. V. Kruzhalov, and S. V. Gorbunov, Fiz. Tverd. Tela,36, No. 9, 2634–2647 (1994).

    Google Scholar 

  7. I. N. Ogorodnikov, V. Yu. Ivanov, and A. V. Kruzhalov, Fiz. Tverd. Tela,36, No. 11, 3287–3298 (1994).

    Google Scholar 

  8. A. Yu. Kuznetsov, V. R. Manozov, and V. V. Myurk, Fiz. Tverd. Tela,27, No. 10, 3030–3036 (1985).

    Google Scholar 

  9. K. N. Giniyatulin, A. V. Kruzhalov, V. A. Maslov, and B. V. Mul'gin, Izv. Akad. Nauk SSSR. Neorgan. Mater.,19, No. 6, 1014–1015 (1983).

    Google Scholar 

  10. I. N. Ogorodnikov, V. Yu. Ivanov, and A. V. Kruzhalov, Radiat. Measurements,24, No. 4, 417–421 (1995).

    Article  Google Scholar 

  11. B. E. Kulyahin, V. A. Lobach, and A. V. Kruzhalov, Fiz. Tverd. Tela,32, No. 12, 3685–3687 (1990).

    Google Scholar 

  12. A. V. Kruzhalov, V. A. Lobach, I. N. Ogorodnikov, and I. R. Rubin, Zh. Prikl. Spektrosk.,51, No. 6, 997–1001 (1989).

    Google Scholar 

  13. V. Yu. Ivanov, I. N. Antsygin, S. V. Gorbunov, A. V. Kruzhalov, and V. A. Maslov, Opt. Spektrosk.,64, No. 4, 949–951 (1988).

    Google Scholar 

  14. S. V. Gorbunov, B. Yu. Yakovlev, A. V. Kruzhalov and V. Yu. Ivanov, Fiz. Tverd. Tela,32, No. 10, 2942–2946 (1990).

    Google Scholar 

  15. V. A. Lobach, I. R. Rubin, A. V. Kruzhalov, B. V. Shul'gin, and V. Yu. Ivanov, Fiz. Tverd. Tela,29, No. 9, 2610–2615 (1987).

    Google Scholar 

  16. V. Ivanov, V. Pustovarov, A. Kruzhalov, and B. Shulgin, Nucl. Instrum. Meth. Phys. Res.,A282, 559–562 (1989).

    ADS  Google Scholar 

  17. D. M. Roessler, W. C. Walker, and E. Loh, J. Phys. Chem. Solids,30, No. 2, 157–167 (1969).

    Article  Google Scholar 

  18. V. Yu. Ivanov, A. V. Kruzhalov, and V. L. Petrov, Proc. 8th All-Union Conference on Application of Synchrotron Radiation, Novosibirsk (1987), pp. 291–293.

  19. H. Albrecht and V. Mandeville, Phys. Rev.,94, No. 3, 776–777 (1954).

    Google Scholar 

  20. A. V. Kruzhalov, N. V. Andreev, K. N. Giniyatulin, and S. V. Gorbunov, Khimiya Tverd. Tela, Mezhvuc. Sbornik,6, 57–71 (1983).

    Google Scholar 

  21. V. Yu. Ivanov, É. Kh. Fel'dbach, S. V. Gorbunov, A. V. Kruzhalov, and I. L. Kuusmani, Fiz. Tverd. Tela,30, No. 9, 2728–2738 (1988).

    Google Scholar 

  22. K. N. Giniyatuli, A. F. Malysheva, A. V. Kruzhalov, and T. N. Kyarner, Tr. Inst. Fiz. Akad. Nauk Estonii,53, 71–82 (1982).

    Google Scholar 

  23. L. V. Viktorov, K. P. Gavrilov, A. V. Kruzhalov, et al., Vopr. Atom. Nauki Tekhn., Ser. Fiz. Radiats. Poverzh. Radiats. Materialoved. Khar'kov,3, No. 22, 65–67 (1982).

    Google Scholar 

  24. S. V. Gorbunov, A. V. Kruzhalov, V. Yu. Ivanov, I. N. Ogorodnikov, and B. V. Shulgin, Proc. 5th Int. Conf. on Tunable Lasers (Baykal, 20–22 Sept. 1988), Vol. 1, Novosibirsk (1988), pp. 148–153.

    Google Scholar 

  25. I. M. Ogorodnikov, A. V. Kruzhalov, and V. A. Maslov, Zh. Prikl. Spektrosk.,49, No. 1, 134–136 (1988).

    Google Scholar 

  26. I. N. Ogorodnikov, B. Yu. Ivanov, and A. V. Kruzhalov, Zh. Prikl. Spektrosk.,54, No. 4, 605–610 (1991).

    Google Scholar 

  27. A. P. Zhurakovskii, A. V. Kruzhalov, and A. M.-E. Saar, Fiz. Tverd. Tela,24, No. 6, 1900–1901 (1982).

    Google Scholar 

  28. I. N. Ogorodnikov, V. Yu. Ivanov, and A. V. Kruzhalov, Record of Int. Workshop “Physical Processes in Fast Scintillators: (PHYSCL-94, Sept. 30–Oct. 3, 1994. St. Petersburg, Russia), P. A. Rodnyi and C. W. E. van Eijk (eds.), Delft, The Netherlands, Stratech. Report TUD-SCIR-94-04 (1994), pp. 142–146.

  29. I. N. Ogorodnikov, A. V. Kuzhalov, and V. Yu. Ivanov, Proc. Int. Conf. “Inorganic Scintillators and Their Applications, SCINT95” (Delft, The Netherlands, Aug. 28–Sept. 1, 1995), P. Dorenbos and C. W. E. van Eijk (eds.), Delft Univ. Press (1995), pp. 216–219.

  30. S. Gorbunov, A. Kruzhalov, and M. Springis, Phys. Stat. Sol. B.,141, No. 1, 293–301 (1987).

    Google Scholar 

  31. S. Gorbunov, V. Ivanov, I. Antsigin, Z. Kruzhalov, and B. Shulgin, Radiat. Eff. Defect Solid,119–121, 839–900 (1991).

    Google Scholar 

  32. S. V. Gorbunov, S. V. Kudyakov, V. Yu. Yakovlov, and A. V. Kruzhalov, Fiz. Tverd. Tela,38, No. 1, 214–219 (1996).

    Google Scholar 

  33. S. Gorbunov, S. Kudyakov, B. Shulgin, and V. Yakovlev, Radiat. Eff. Defect Solid,135, 269–274 (1995).

    Google Scholar 

  34. R. H. Bartram, C. E. Swenberg, and J. T. Fournier, Phys. Rev.,139, A941-A952 (1965).

    Article  ADS  Google Scholar 

  35. A. Vasil'ev, K. Topornin, and R. Evarestov, Opt. Spektrosk.,48, No. 2, 277–282 (1980).

    Google Scholar 

  36. M. Zamorskii and I. Kityuk, Zh. Prikl. Spektrosk,48, No. 1, 143–146 (1989).

    Google Scholar 

  37. I. N. Ogorodnikov, A. V. Kruzhaolv, and V. A. Maslov, Zh. Tekh. Fiz.,64, No. 3, 100–108 (1994).

    Google Scholar 

Download references

Authors

Additional information

Ural State Technical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 76–93, November, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruzhalov, A.V., Ogorodnikov, I.N. & Kudyakov, S.V. Radiative relaxation of low-energy electron excitations and point defects in beryllium oxide. Russ Phys J 39, 1067–1081 (1996). https://doi.org/10.1007/BF02436150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02436150

Keywords

Navigation