Skip to main content
Log in

Riemann-Cartan-Weyl quantum geometry. II Cartan stochastic copying method, Fokker-Planck operator and Maxwell-de Rham equations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We reintroduce the Riemann-Cartan-Weyl (RCW) spacetime geometries of quantum mechanics [Rapoport (1996),Int. J. Theor. Phys. 35(2)] in two novel ways: first, through the covariant formulation of the Fokker-Planck operator of the quantum motions defined by these geometries, and second, by stochastic extension of Cartan's development method. The latter is a gauge-theoretic formulation of nonlinear diffusions in spacetime in terms of the stochastic differential geometry associated to the RCW geometries with Weyl torsion. The Weyl torsion plays the fundamental role of describing the first moment (incorporating also the fluctuations due to the second moment) of the stochastic diffusion processes. In this article we present the most general expression of the Weyl torsion one-form given in terms of its de Rham decomposition into the exact component associated with the 0-spin field ϕ and two electromagnetic potentials, one the codifferential of a 2-form and the other a harmonic 1-form. We thus give an original description of the Maxwell theory and its relation to torsion. We associate these electromagnetic potentials with the irreversibility of the diffusions. In an Appendix, we give a self-contained presentation of the theory of diffusions on manifolds and the stochastic calculi as a basis for the Cartan stochastic copying method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxendale, P. (1984).Compositio Mathematica,53, 19–50.

    MATH  MathSciNet  Google Scholar 

  • Bricmont, J. (1996). The science of chaos or chaos in the sciences? Preprint, Physique Théorique, Université Catholique de Louvain-la-Neuve, Belgium; to appear inPhysicalia Magazine andProceedings of the New York Academy of Sciences.

    Google Scholar 

  • Bohm, D. (1952).Physical Review,85, 166.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bohm, D. and Vigier, J. P. (1953).Physical Review,96, 208.

    Article  MathSciNet  ADS  Google Scholar 

  • Carverhill, A. P., and Elworthy, K. D. (1983).Zeitschrift für Wahrscheinlichkeitstheorie,65, 245.

    Article  MATH  MathSciNet  Google Scholar 

  • De Broglie, L. (1953).La Physique quantique restera-t-elle indeteérministe, Gauthier-Villars, Paris.

    Google Scholar 

  • De Broglie, L. (1956).Une tentative d'interpretation causale et non-lineáire de la Mecańique Analytique, Paris, Gauthier, Villars.

    Google Scholar 

  • De Rham, G. (1984).Differentiable Manifolds, Springer-Verlag, Berlin [translation ofVariétés Différentiables, Hermann Paris (1960)].

    Google Scholar 

  • De Sabatta, V., and Sivaram, C. (1991). The central role of spin in black hole evaporation, in black hole physics, inProceedings of the XIIth Course of the International School of Cosmology and Gravitation, V. de Sabatta and Z. Zhang (eds.)

  • De Witt-Morette, C., and Elworthy, K. D. (eds.) (1981). Stochastic methods in physics,Physics Reports,77, 122–375.

    Google Scholar 

  • Bells, J., and Elworthy, K. D. (1976). Stochastic dynamical systems, inControl Theory and Topics in Functional Analysis, Vol. III, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Elworthy, K. D. (1982).Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gardiner, C. W. (1993).Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Graham, R., and Haken, H. (1971).Zeitschrift für Physik,243, 289–302.

    Article  MathSciNet  Google Scholar 

  • Guerra, F. (1981). Structural aspects of stochastic mechanics and stochastic field theory,Physics Reports,77, 263–312.

    Article  MathSciNet  ADS  Google Scholar 

  • Hehl, F., MacCrea, J. D., Mielke, E., and Ne'eman, Y. (1995).Physics Reports,258 1–157.

    Article  MathSciNet  ADS  Google Scholar 

  • Hojman, S., Rosenbaum, M., and Ryan, M. P. (1974).Physical Review D,19, 430.

    Article  ADS  Google Scholar 

  • Holland, P. (1993).The Quantum Theory of Motion, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ikeda, N., and Watanabe, S., (1981).Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam and Tokyo.

    Google Scholar 

  • Kleinert, H. (1989).The Gauge Theory of Defects, I and II World Scientific, Singapore.

    Google Scholar 

  • Kleinert, H. (1991).Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, World Scientific, Singapore.

    Google Scholar 

  • Kolmogorov, A. N. (1937).Mathematische Annalen,113, 776–772;112, 155–160.

    Google Scholar 

  • Lasota, A., and Mackey, M. (1985).Probabilistic Properties of Dynamical Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • McKean, H. P. (1969).Stochastic Integrals Academic Press, New York.

    Google Scholar 

  • Misner, C., Thorne, K., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco.

    Google Scholar 

  • Nagasawa, M. (1993).Schroedinger Equations and Diffusion Theory, Birkhauser, Basel.

    Google Scholar 

  • Namsrai, K. (1985).Nonlocal Quantum Field Theory and Stochastic Mechanics, Reidel, Dordrecht.

    Google Scholar 

  • Nelson, E. (1985).Quantum Fluctuations, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Prigogine, I. (1962).Nonequilibrium Statistical Mechanics, Interscience, New York.

    Google Scholar 

  • Prigogine, I. (1995). InDynamical Systems and Chaos, Proceedings, International Conference on Dynamical Systems and Chaos, II, Y. Aizawa, ed., World Scientific, Singapore, and references therein.

    Google Scholar 

  • Rapoport, D. (1991). Stochastic processes in conformal Riemann-Cartan-Weyl gravitation,International Journal of Theoretical Physics,30, 1497.

    Article  MathSciNet  Google Scholar 

  • Rapoport, D. (1995a). The Cartan structure of quantum and classical gravitation, inGravitation. The space-time Space-Time Structure, Proceedings, P. Letelier and W. Rodrigues, eds., World Scientific, Singapore.

    Google Scholar 

  • Rapoport, D. (1995b). The geometry of quantum fluctuations, the quantum Lyapounov exponents and the Perron-Frobenius stochastic semigroups, inDynamical Systems and Chaos, Proceedings, International Conference on Dynamical Systems and Chaos, II, Y. Aizawa, ed., World Scientific, Singapore, p. 73.

    Google Scholar 

  • Rapoport, D. (1995c). Cartan geometries of gravitation, the deformed Laplacian and ergodic structures, inConference on Topological and Geometrical Problems Related to Quantum Field Theory, March, 1995, ICTP.

  • Rapoport, D. (1995d). A geometro-stochastic theory of Quantum Mechanics, Gravitation and Hydrodynamics,Hadronic J. Suppl.,11, 379–444.

    MathSciNet  Google Scholar 

  • Rapoport, D. (1996a). Riemann-Cartan-Weyl quantum geometries, I: Lapacians and supersymmetric systems,International Journal of Theoretical Physics,35(2).

  • Rapoport, D. (1996b). Riemann-Cartan-Weyl quantum geometrics geometries III: Heat kernels in quantum gravity, the quantum potential and classical motions, in preparation.

  • Rapoport, D. (1996c). The geometry of quantum fluctuations, I (Non-equilibrium statistical mechanics), inNew Frontiers in Algebras, Group and Geometries, G. Tsagas, (ed.), Hadronic Press and Ukraine Academy of Sciences.

  • Rapoport, D. (1996d). Covariant non-linear non-equilibrium thermodynamics and the ergodic theory of stochastic and quantum flows, inInstabilities and Non-Equilibrium Structures, Vol. 6, E. Tirapeguiet al. ed., Kluwer, Dordrecht.

    Google Scholar 

  • Rapoport, D. (1997). Torison and nonlinear quantum mechanics, inGroup XXI, Physical Applications and Mathematical Aspects of Geometry, Groups and Algebra, I, Proceedings of the XXI International Conference on Group Theoretical Methods in Physics, Gosler, Germany, June 1996, H. D. Doebner, et al., eds., World Scientific, Singapore, pp. 446–450.

    Google Scholar 

  • Rapoport, D., and Sternberg, S. (1984a). On the interactions of spin with torsion,Annals of Physics,158, 447.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Rapoport, D., and Sternberg, S. (1984b). Classical mechanics without Lagrangians nor Hamiltonians,Lettere al Nuovo Cimento,80A, 371.

    MathSciNet  Google Scholar 

  • Rapoport, D., Rodriques, W., de Souza, Q., and Vaz, J. (1994). The Riemann-Cartan-Weyl Geometry generated by a Dirac-Hestenes spinor field,Algebras, Groups and Geometries,11, 23–35.

    MathSciNet  Google Scholar 

  • Rodrigues, W., and Lu, Y. (1996). On the existence of undistorted progressive waves of arbitrary speeds 0≤v<∞ in nature,Foundations of Physics, to appear.

  • Rodrigues, W., and Vaz, J. (1993). A basis for double solution theory, in R. Delanghe, ed.,Clifford Algebras and their Applications in Mathematical Physics, Kluwer, Dordrecht.

    Google Scholar 

  • Rogers, L. C., and Williams, D., (1987).Diffusions, Markov Processes and Martingales, Wiley, New York.

    Google Scholar 

  • Selleri, F., ed. (1981).Quantum Mechanics versus Local Realism, Plenum Press, New York.

    Google Scholar 

  • Van Kampen, N. G. (1957).Physica,23, 816.

    Article  MATH  MathSciNet  Google Scholar 

  • Witten, E. (1994).Math Research Letters,1, 769.

    MATH  MathSciNet  Google Scholar 

  • Yosida, K. (1980).Functional Analysis, 6th ed., Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, D.L. Riemann-Cartan-Weyl quantum geometry. II Cartan stochastic copying method, Fokker-Planck operator and Maxwell-de Rham equations. Int J Theor Phys 36, 2115–2152 (1997). https://doi.org/10.1007/BF02435948

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435948

Keywords

Navigation