International Journal of Theoretical Physics

, Volume 36, Issue 3, pp 573–612 | Cite as

Projective fourier duality and Weyl quantization

  • R. Aldrovandi
  • L. A. Saeger


The Weyl-Wigner correspondence prescription, which makes great use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for noncommutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. Both an Abelian and a symmetricprojective Kac algebra are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion ofprojective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras.


Heisenberg Group Central Extension Projective Representation Fourier Representation Weyl Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrovandi, R., and Galetti, D. (1990). On the structure of quantum phase space,Journal of Mathematical Physics,31(12), 2987–2995.MATHMathSciNetCrossRefADSGoogle Scholar
  2. Aldrovandi, R., and Saeger, L. A. (1996). Fourier duality as a quantization principle,International Journal of Theoretical Physics, to appear.Google Scholar
  3. Arnold, V. I. (1978).Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin.MATHGoogle Scholar
  4. Baaj, S., and Skandalis, G. (1993). Unitaires multiplicatifs et dualité pour les produits croisés deC *-algèbres,Annales Scientifiques École Normale Superieure (4),26, 425–488.MATHMathSciNetGoogle Scholar
  5. Bargmann, V. (1954). On unitary ray representations of continuous groups,Annals of Mathematics,59, 1–46.MATHMathSciNetCrossRefGoogle Scholar
  6. Barut, A. O., and Raczka, R. (1977).Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw.Google Scholar
  7. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D. (1978). Deformation theory and quantization, I and II,Annals of Physics,111, 61–110, 111–151.MATHMathSciNetCrossRefADSGoogle Scholar
  8. Bratteli, O., and Robinson, D. W. (1987).Operator Algebras and Quantum Statistical Mechanics 1, 2nd ed., Springer, New York.MATHGoogle Scholar
  9. Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. (1982).Analysis, Manifolds and Physics, rev ed., North-Holland, Amsterdam.MATHGoogle Scholar
  10. Dirac, P. A. M. (1958).The Principles of Quantum Mechanics, Oxford University Press, Oxford.MATHGoogle Scholar
  11. Dixmier, J. (1977).C *-Algebras, North-Holland, Amsterdam.MATHGoogle Scholar
  12. Enock, M., and Schwartz, J.-M. (1992).Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin.MATHGoogle Scholar
  13. Enock, M., and Vaįnerman, L. (1996). Deformation of a Kac Algebra by an Abelian subgroup,Communications in Mathematical Physics,178, 571–596.MATHMathSciNetCrossRefADSGoogle Scholar
  14. Folland, G. B. (1989).Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey.MATHGoogle Scholar
  15. Gracia-Bondía, J. M., and Várilly, J. C. (1988). Algebras of distributions suitable for phase-space quantum mechanics. I and II,Journal of Mathematical Physics,29(4), 869–887.MATHMathSciNetCrossRefADSGoogle Scholar
  16. Hillery, M., O'Connel, R. F., Scully, M. O., and Wigner, E. P. (1984). Distribution functions in physics: Fundamentals,Physics Reports,106, 121–167.MathSciNetCrossRefADSGoogle Scholar
  17. Hudson, R. L. (1978). Translation-invariant traces and Fourier analysis on multiplier representations of vector groups,Reports on Mathematical Physics,13, 327–335.MATHMathSciNetCrossRefADSGoogle Scholar
  18. Isham, C. J. (1984). Topological and global aspects of quantum theory, inRelativity, Groups and Topology II, B. S. DeWitt and R. Stora, eds., North-Holland, Amsterdam, p. 1059.Google Scholar
  19. Landsman, N. P. (1993). Deformations of algebras of observables and the classical limit of quantum mechanics, Reviews in Mathematical Physics,5(4), 775–806.MATHMathSciNetCrossRefADSGoogle Scholar
  20. Landstad, M. B., and Raeburn, I. R. (1995). Twisted dual-group algebras: Equivariant deformations ofC 0(G).Journal of Functional Analysis,132, 43–85.MATHMathSciNetCrossRefGoogle Scholar
  21. Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions,Physics Reports,259, 147–211.MathSciNetCrossRefGoogle Scholar
  22. Mackey, G. W. (1957). Borel structure in groups and their duals,Transactions of the American Mathematical Society,85, 134–165.MATHMathSciNetCrossRefGoogle Scholar
  23. Mackey, G. W. (1958). Unitary representations of group extensions, I,Acta Mathematica 99, 265–311.MATHMathSciNetCrossRefGoogle Scholar
  24. Mackey, G. W. (1978).Unitary Group Representations in Physics, Probability and Number Theory, Benjamin/Cummings, Reading, Massachusetts.MATHGoogle Scholar
  25. Moyal, J. E. (1949). Quantum mechanics as a statistical theory,Proceedings of the Cambridge Philosophical Society,45, 99–124.MATHMathSciNetCrossRefGoogle Scholar
  26. Reiter, H. (1968).Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford.MATHGoogle Scholar
  27. Segal, I. E. (1953). A non-commutative extension of abstract integration,Annals of Mathematics (2),57(3), 401–457.MATHMathSciNetCrossRefGoogle Scholar
  28. Sugiura, M. (1990).Unitary Representations and Harmonic Analysis, North-Holland/Kodansha, Amsterdam.MATHGoogle Scholar
  29. Taylor, M. E. (1986).Noncommutative Harmonic Analysis, American Mathematical Society, Providence, Rhode Island.MATHGoogle Scholar
  30. Tuynman, G. M., and Wiegerinck, W. A. J. J. (1987). Central extensions and physics,Journal of Geometry and Physics,4(2), 207–258.MATHMathSciNetCrossRefADSGoogle Scholar
  31. Vaįnermann, L. I. (1988). Duality of algebras with an involution and generalized shift operators,Journal of Soviet Mathematics,42(6), 2113–2138.CrossRefGoogle Scholar
  32. Varadarajan, V. S. (1970).Geometry of Quantum Theory, Vol. II, van Nostrand Reinhold, New York.MATHGoogle Scholar
  33. Weyl, H. (1931).The Theory of Groups and Quantum Mechanics, Dover, New York.MATHGoogle Scholar
  34. Wigner, E. P. (1932). On the quantum correction for thermodynamic equilibrium,Physical Review,40, 749–759.MATHCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. Aldrovandi
    • 1
  • L. A. Saeger
    • 1
  1. 1.Instituto de Física TeóricaUNESPSão PauloBrazil

Personalised recommendations