International Journal of Theoretical Physics

, Volume 36, Issue 5, pp 1133–1151 | Cite as

Siebenmann-type cobordisms with borders and topology changes by quantum tunneling

  • Vladimir N. Efremov
Article

Abstract

Siebenmann-type cobordisms are constructed to describe topology changes with the Seifert fibered homology spheres in in- and out-states. We study the problem of determining of topology-changing amplitudes for these quantum tunneling processes. The calculations are performed in the stationary phase approximation for Kodama wave functions. In this approximation the amplitudes are expressed in terms of Chern-Simons invariants of flatSU(2)-connections over the cobordism boundary components. The topology-change amplitudes found are factorized into the Kodama wave functions for the lens spaces. The results are compared with those for Fintushel-Stern-type cobordisms which have been previously investigated.

Keywords

Topology Change Lens Space Solid Torus Homology Sphere Flat Connection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashtekar, A. (1991).Lectures on Nonperturbative Canonical Gravity, World Scientific, Singapore.Google Scholar
  2. Ashtekar, A., Rovelli, C., and Smolin, L. (1992).Physical Review Letters,69, 237.MATHMathSciNetCrossRefADSGoogle Scholar
  3. Brügmann, B., Gambini, R., and Pullin, J. (1992).Nuclear Physics B,385, 587.MathSciNetCrossRefADSGoogle Scholar
  4. Crane, L. (1991).Communications of Mathematical Physics,135, 615.MATHMathSciNetCrossRefADSGoogle Scholar
  5. Dijkgraaf, R., and Witten, E. (1990).Communications of Mathematical Physics,129, 393.MATHMathSciNetCrossRefADSGoogle Scholar
  6. Efremov, V. (1996).International Journal of Theoretical Physics,35, 63.MATHMathSciNetCrossRefADSGoogle Scholar
  7. Eisenbud, D., and Neumann, W. (1985). 3-Dimensional link theory and invariants of plane curve,Annals of Mathematics Studies,110, 3.MathSciNetGoogle Scholar
  8. Fintushel, R., and Stern, R. (1990).Proceedings of the London Mathematical Society,61, 109.MATHMathSciNetGoogle Scholar
  9. Fujiwara, Y., Higuchi, S., Hosoya, A., Mishima, T., and Siino, M. (1992).Progress of Theoretical Physics,87, 253.MathSciNetCrossRefADSGoogle Scholar
  10. Halliwell, J., and Hartle, J. (1990).Physical Review D,41, 1815.MathSciNetCrossRefADSGoogle Scholar
  11. Hawking, S. (1976).Physical Review D,14, 2460.MathSciNetCrossRefADSGoogle Scholar
  12. Hawking, S. (1988).Physical Review D,37, 904.MathSciNetCrossRefADSGoogle Scholar
  13. Horowitz, G. (1989).Communications in Mathematical Physics,125, 417.MATHMathSciNetCrossRefADSGoogle Scholar
  14. Horowitz, G. (1991).Classical and Quantum Gravity,8, 587.MATHMathSciNetCrossRefADSGoogle Scholar
  15. Jacobson, T., and Smolin, L. (1988).Nuclear Physics B,299, 295.MathSciNetCrossRefADSGoogle Scholar
  16. Kirk, P., and Klassen, E. (1990).Mathematische Annalen,287, 343.MATHMathSciNetCrossRefGoogle Scholar
  17. Kirk, P., and Klassen, E. (1991).Topology,30, 77.MATHMathSciNetCrossRefGoogle Scholar
  18. Klevanov, I., Susskind, L., and Banks, T. (1989).Nuclear Physics B,317, 665.MathSciNetCrossRefADSGoogle Scholar
  19. Kodama, H. (1990).Physical Review D,42, 2548.MathSciNetCrossRefADSGoogle Scholar
  20. Martin, S. (1989).Nuclear Physics B,327, 179.CrossRefADSGoogle Scholar
  21. Neumann, W., and Raymond, F. (1978).Lecture Notes in Mathematics,664, 163.MATHMathSciNetGoogle Scholar
  22. Okonek, Ch. (1991).Lecture Notes in Mathematics,1504, 138.MATHMathSciNetGoogle Scholar
  23. Orlik, P. (1972).Lecture Notes in Mathematics,291, 1.MathSciNetCrossRefGoogle Scholar
  24. Rong, Y. (1993).Pacific Journal of Mathematics,160, 143.MATHMathSciNetGoogle Scholar
  25. Rourke, C., and Sanderson, B. (1972).Introduction to Piecewise-Lineal Topology, Springer-Verlag, New York.Google Scholar
  26. Rovelli, C., and Smolin, L. (1990).Nuclear Physics B,331, 80.MathSciNetCrossRefADSGoogle Scholar
  27. Scott, P. (1983).Bulletin of the London Mathematical Society,15(Part 5), 401.MATHMathSciNetGoogle Scholar
  28. Siebenmann, L. (1979). InSpringer Lecture Notes in Mathematics, Vol. 788, Springer, Berlin, p. 172.Google Scholar
  29. Smolin, L. (1995). Linking topological quantum field theory and nonperturbative quantum gravity, Preprint, CGPG-95/4-5, IASSNS-95/29.Google Scholar
  30. Susskind, L. (1994). The world as hologram. Preprint. hep-th/9409089.Google Scholar
  31. 't Hooft, G. (1993). Dimensional reduction in quantum gravity. Preprint. gr.-qc/9310006.Google Scholar
  32. Weinberg, S. (1989).Review of Modern Physics,61, 1.MathSciNetCrossRefADSMATHGoogle Scholar
  33. Witten, E. (1988).Nuclear Physics B,311, 46.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Vladimir N. Efremov
    • 1
  1. 1.Departamento de MatematicasUniversidad de GuadalajaraGuadalajaraMéxico

Personalised recommendations