International Journal of Theoretical Physics

, Volume 36, Issue 4, pp 997–1007 | Cite as

Radiative transfer single-scattering albedo estimation with a super-padé approximation of Chandrasekhar'sH-function

  • Eric Steinfelds
  • Mark A. Samuel
  • N. J. McCormick
  • James H. Reid


Three algorithms for evaluating the single-scattering albedo within an isotropically scattering, semi-infinite medium are developed for measurements external to the medium with narrow and wide field-of-view detectors. Two of the algorithms are iterative and require the computation of the ChandrasekharH-function, which can be done with the super-Padé approximation, while the third algorithm is an explicit one that requires no iteration.


Radiative Transfer Physical Review Letter Radiative Transfer Equation Isotropic Scattering Pad6 Approximant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Shumays, I. (1966).Nuclear Science and Engineering,26, 430–431.Google Scholar
  2. Abu-Shumays, I. (1967).Nuclear Science and Engineering,27, 607–608.Google Scholar
  3. Baker, Jr., G. A. (1975).Essentials of Padé Approximants, Academic Press, New York.Google Scholar
  4. Bender, C. and Orszag, S. (1978).Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.Google Scholar
  5. Chandrasekhar, S. (1960).Radiative Transfer, Dover, New York.Google Scholar
  6. Dunn, W. L., Garcia, R. D. M., and Siewert, C. E. (1982).Astrophysical Journal,260, 849–854.CrossRefADSGoogle Scholar
  7. Ellis, J., Gardi, E., Karliner, M., and Samuel, M. A. (1996).Physics Letters B,366, 268–275.MathSciNetCrossRefADSGoogle Scholar
  8. Kelley, C. T. (1978).Journal of Mathematical Physics,19, 500–501.MATHMathSciNetCrossRefADSGoogle Scholar
  9. Kelley, C. T. (1980).Journal of Mathematical Physics,21, 1625–1628.MATHMathSciNetCrossRefADSGoogle Scholar
  10. Kelley, C. T. (1982).Journal of Mathematical Physics,23, 2097–2100.MATHMathSciNetCrossRefADSGoogle Scholar
  11. McCormick, N. J. (1979).Journal of Mathematical Physics,20, 1504–1507.CrossRefADSGoogle Scholar
  12. Samuel, M. A., Ellis, J., and Karliner, M. (1995a).Physical Review Letters,74, 4380–4383.CrossRefADSGoogle Scholar
  13. Samuel, M. A., Li, G., and Steinfelds, E. (1995b).Physical Review E,51, 3911–3933.CrossRefADSGoogle Scholar
  14. Sanchez, R., and McCormick, N. J. (1981).Journal of Mathematical Physics,22, 847–855.MATHMathSciNetCrossRefADSGoogle Scholar
  15. Siewert, C. E. (1978).Journal of Mathematical Physics,19, 1587–1588.CrossRefADSGoogle Scholar
  16. Siewert, C. E. (1979).Journal of Quantitative Spectroscopy and Radiative Transfer,22, 441–446.CrossRefADSGoogle Scholar
  17. Stibbs, D. W. N., and Weir, R. E. (1959).Monthly Notices of the Royal Astronomical Society,119, 512–525.MATHMathSciNetADSGoogle Scholar
  18. Vainshtein, A. I., and Zakharov, V. I. (1994).Physical Review Letters,73, 1207.CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Eric Steinfelds
    • 1
  • Mark A. Samuel
    • 1
  • N. J. McCormick
    • 2
  • James H. Reid
    • 3
  1. 1.Department of PhysicsOklahoma State UniversityStillwater
  2. 2.Department of Mechanical EngineeringUniversity of WashingtonSeattle
  3. 3.L. H. Lanzl Institute of Medical PhysicsSeattle

Personalised recommendations