Skip to main content
Log in

Naturalness of the space of states in quantum mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We show how certain constructions of quantum mechanics, like monopoles, instantons, and the Schrödinger-von Neumann equation, are related to geometric functors which are representable. We study the differential geometry of the projective bundle associated with an infinite-dimensional separable Hilbert space, and we construct a universal connection which, is described as a subspace of skwe-Hermitian operators. This connection is responsible for the Berry phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Marsden, J., and Ratiu, T. (1988).Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Aguilar, M. A. (1996). Lie groups and differential geometry.,AIP Conference Proceedings,365, 33–68.

    MathSciNet  ADS  Google Scholar 

  • Aguilar, M. A., and Socolovsky, M. (1996). On the geometry of quantum states,AIP Conference Proceedings,359, 495–499.

    MathSciNet  ADS  Google Scholar 

  • Aharonov, Y., and Anandan, J. (1987). Phase change during a cyclic quantum evolution.Physical Review Letters,58, 1593.

    Article  MathSciNet  ADS  Google Scholar 

  • Ajanapon, P. (1987). Classical limit of the path-integral formulation of quantum mechanics in terms of the density matrix.American Journal of Physics,55, 159–163.

    Article  ADS  Google Scholar 

  • Ajanapon, P. (1988). Field quantization for pure and mixed states and its classical limit,Journal of Mathematical Physics,29, 1862–1865.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., and Schilling, T. A. (1994). Geometry of quantum mechanics,AIP Conference Proceedings,342, 471–478.

    Article  ADS  Google Scholar 

  • Berry, M. (1984). Quantal phase factors accompanying adiabatic changes,Proceedings of the Royal Society of London A,392, 45.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bohm, A. (1993a). The geometric phase in quantum physics, inIntegrable Systems, Quantum Groups, and Quantum Field Theory, L. A Ibort and M. A. Rodríguez, eds., pp. 347–415.

  • Bohm, A. (1993b).Quantum Mechanics: Foundations and Applications 3rd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  • Bohm, A., Boya, L. J., Mostafazadeh, A., and Rudolph, G. (1993). Classification theorem for principal fibr bundles, Berry's phase, and exact cyclic evolution,Journal of Geometry and Physics,12, 13–28.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Choquet-Bruhat, Y., De Witt-Morette, C., and Dillard-Bleick, M. (1982).Analysis, Manifolds and Physics, Part I: Basics, North Holland, Amsterdam.

    Google Scholar 

  • Conway, J. (1990).A Course in Functional Analysis, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Corichi, A., and Ryan, Jr., M. P. (1995). Quantization of nonstandard Hamiltonian systems, CGPG-95/8-5.

  • Dirac, P. A. M. (1958).The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Dold, A. (1963). Partitions of unity in the theory of fibrations.Annals of Mathematics,78, 223–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Isham, C. J. (1989).Modern Differential Geometry for Physicists, World Scientific, Singapore.

    MATH  Google Scholar 

  • Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. I, Wiley, New York.

    MATH  Google Scholar 

  • Lawson, H. B., and Michelsohn, M.-L. (1989).Spin Geometry, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Mac Lane, S., and Birkoff, G. (1979).Algebra, 2nd ed., Macmillan, New York.

    Google Scholar 

  • Milnor, J. (1956). Construction of universal bundles II,Annals of Mathematics,63, 430–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Milnor, J. W., and Stasheff, J. D. (1974).Characteristic Classes, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Narasimhan, M. S., and Ramanan, S. (1961). Existence of universal connections,American Journal of Mathematics,83, 563–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Palais, R. (1966). Homotopy theory of infinite dimensional manifolds.Topology,5, 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • Simon, B. (1983). Holonomy, the quantum adiabatic theorem, and Berry phase,Physical Review Letters,51, 2167–2170.

    Article  MathSciNet  ADS  Google Scholar 

  • Steenrod, N. (1951).The Topology of Fibre Bundles, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Trautman, A. (1977). Solutions of the Maxwell and Yang-Mills equations associated with Hopf fibrings,International Journal of Theoretical Physics,16, 561–565.

    Article  ADS  Google Scholar 

  • Ward, R. S., and Wells, Jr., R. O. (1990).Twistor Geometry and Field Theory. Cambridge University Press, Cambridge.

    Google Scholar 

  • Willard, S. (1970).General Topology, Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Wu, T. T., and Yang, C. N. (1975). Concept of nonintegrable, phase factors and global formulations of gauge fields,Physical. Review D,12, 3845–3857.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, M.A., Socolovsky, M. Naturalness of the space of states in quantum mechanics. Int J Theor Phys 36, 883–921 (1997). https://doi.org/10.1007/BF02435791

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435791

Keywords

Navigation