International Journal of Theoretical Physics

, Volume 36, Issue 2, pp 385–393 | Cite as

Relation between the Kähler equation and the Dirac equation

  • Vittorio Cantoni


The formal analogy and the substantial differences between the Kähler equation and the Dirac equation are explained in terms of the relativistic compatibility of a common differential operator on the Clifford algebraC with two distinct representations of the Lorentz Lie algebra onC.


Dirac Equation Clifford Algebra Regular Representation Exterior Algebra Distinct Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becher, P., and Joos, H. (1982).Zeitschrift für Physik C,15, 343.MathSciNetCrossRefGoogle Scholar
  2. Benn, I. M., and Tucker, R. W. (1983).Communications in Mathematical Physics,89, 341.MATHMathSciNetCrossRefADSGoogle Scholar
  3. Benn, I. M., and Tucker, R. W. (1987).An Introduction to Spinors and Geometry with Applications in Physics, Hilger, Bristol, England.Google Scholar
  4. Cantoni, V. (1996).International Journal of Theoretical Physics,35, 2121.MATHMathSciNetCrossRefGoogle Scholar
  5. Crumeyrolle, A. (1990).Orthogonal and Symplectic Clifford Algebras, Kluwer, Dordrecht.Google Scholar
  6. Gel'fand, I. M., Minlos, R. A., and Shapiro, Z. Ya. (1963).Representations of the Rotation and Lorentz Groups and Their Applications, Pergamon Press, Oxford.Google Scholar
  7. Graf, W. (1978).Annales de l'Institut Henri Poincaré,85, 85.MATHMathSciNetGoogle Scholar
  8. Talebaoui, W. (1994).Journal of Mathematical Physics,35, 1399.MATHMathSciNetCrossRefADSGoogle Scholar
  9. Talebaoui, W. (1995).International Journal of Theoretical Physics,34, 369.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Vittorio Cantoni
    • 1
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanItaly

Personalised recommendations